Package elki.clustering.dbscan
Class DBSCAN<O>
- java.lang.Object
-
- elki.clustering.dbscan.DBSCAN<O>
-
- Type Parameters:
O
- the type of Object the algorithm is applied to
- All Implemented Interfaces:
Algorithm
,ClusteringAlgorithm<Clustering<Model>>
@Title("DBSCAN: Density-Based Clustering of Applications with Noise") @Description("Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="Martin Ester, Hans-Peter Kriegel, J\u00f6rg Sander, Xiaowei Xu",title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise",booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96)",url="http://www.aaai.org/Library/KDD/1996/kdd96-037.php",bibkey="DBLP:conf/kdd/EsterKSX96") @Reference(authors="Erich Schubert, J\u00f6rg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu",title="DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN",booktitle="ACM Trans. Database Systems (TODS)",url="https://doi.org/10.1145/3068335",bibkey="DBLP:journals/tods/SchubertSEKX17") @Priority(200) public class DBSCAN<O> extends java.lang.Object implements ClusteringAlgorithm<Clustering<Model>>
Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to find density-connected sets in a database.Reference:
Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96)Further discussion:
Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu
DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN
ACM Trans. Database Systems (TODS)- Since:
- 0.1
- Author:
- Arthur Zimek, Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description private class
DBSCAN.Instance
Instance for a single data set.static class
DBSCAN.Par<O>
Parameterization class.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description TypeInformation[]
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.Clustering<Model>
run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun
-
-
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:Algorithm
Get the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestriction
in interfaceAlgorithm
- Returns:
- Type restriction
-
run
public Clustering<Model> run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
-
-