Package elki.clustering.hierarchical
Class MedoidLinkage<O>
- java.lang.Object
-
- elki.clustering.hierarchical.MedoidLinkage<O>
-
- Type Parameters:
O
- Object type
- All Implemented Interfaces:
Algorithm
,HierarchicalClusteringAlgorithm
@Reference(authors="D. Herr, Q. Han, S. Lohmann, T. Ertl",title="Visual clutter reduction through hierarchy-based projection of high-dimensional labeled data",booktitle="Graphics Interface Conference",url="https://doi.org/10.20380/GI2016.14",bibkey="DBLP:conf/graphicsinterface/HerrHLE16") @Reference(authors="S. Miyamoto, Y. Kaizu, Y. Endo",title="Hierarchical and non-hierarchical medoid clustering using asymmetric similarity measures",booktitle="Soft Computing and Intelligent Systems (SCIS) and Int. Symp. Advanced Intelligent Systems (ISIS)",url="https://doi.org/10.1109/SCIS-ISIS.2016.0091",bibkey="DBLP:conf/scisisis/MiyamotoKE16") public class MedoidLinkage<O> extends java.lang.Object implements HierarchicalClusteringAlgorithm
Medoid linkage uses the distance of medoids as criterion. The implementation is a simplified version of AGNES, as we do not have to update a distance matrix. This approach was invented at least twice. An approach more consistent with the ideas of optimum medoids is found inHACAM
, which uses the loss of the resulting medoid after merging instead.References:
D. Herr, Q. Han, S. Lohmann, T. Ertl
Visual clutter reduction through hierarchy-based projection of high-dimensional labeled data
Graphics Interface ConferenceS. Miyamoto, Y. Kaizu, Y. Endo
Hierarchical and non-hierarchical medoid clustering using asymmetric similarity measures
Soft Computing and Intelligent Systems (SCIS) and Int. Symp. Advanced Intelligent Systems (ISIS)- Since:
- 0.8.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
MedoidLinkage.Instance
Main worker instance of AGNES.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Constructor Summary
Constructors Constructor Description MedoidLinkage(Distance<? super O> distance)
Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description TypeInformation[]
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.ClusterPrototypeMergeHistory
run(Relation<O> relation)
Run the algorithm-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.hierarchical.HierarchicalClusteringAlgorithm
autorun
-
-
-
-
Method Detail
-
run
public ClusterPrototypeMergeHistory run(Relation<O> relation)
Run the algorithm- Parameters:
relation
- Relation- Returns:
- Clustering hierarchy
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:Algorithm
Get the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestriction
in interfaceAlgorithm
- Returns:
- Type restriction
-
-