Package elki.clustering.kmeans
Class AbstractKMeans<V extends NumberVector,M extends Model>
- java.lang.Object
-
- elki.clustering.kmeans.AbstractKMeans<V,M>
-
- Type Parameters:
V- Vector typeM- Cluster model type
- All Implemented Interfaces:
Algorithm,ClusteringAlgorithm<Clustering<M>>,KMeans<V,M>
- Direct Known Subclasses:
BetulaLloydKMeans,CompareMeans,HamerlyKMeans,HartiganWongKMeans,KDTreePruningKMeans,KMeansMinusMinus,KMediansLloyd,LloydKMeans,MacQueenKMeans,ParallelLloydKMeans,SameSizeKMeans,SimplifiedElkanKMeans,SingleAssignmentKMeans,SphericalKMeans,XMeans,YinYangKMeans
public abstract class AbstractKMeans<V extends NumberVector,M extends Model> extends java.lang.Object implements KMeans<V,M>
Abstract base class for k-means implementations.- Since:
- 0.5.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classAbstractKMeans.InstanceInner instance for a run, for better encapsulation, that encapsulates the standard flow of most (but not all) k-means variations.static classAbstractKMeans.Par<V extends NumberVector>Parameterization class.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description protected NumberVectorDistance<? super V>distanceDistance function used.protected KMeansInitializationinitializerMethod to choose initial means.protected intkNumber of cluster centers to initialize.protected intmaxiterMaximum number of iterations-
Fields inherited from interface elki.clustering.kmeans.KMeans
DISTANCE_FUNCTION_ID, INIT_ID, K_ID, MAXITER_ID, SEED_ID, VARSTAT_ID
-
-
Constructor Summary
Constructors Constructor Description AbstractKMeans(int k, int maxiter, KMeansInitialization initializer)Constructor.AbstractKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description private static double[][]denseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.private static voiddensePlusEquals(double[] sum, NumberVector vec)Similar to VMath.plusEquals, but accepts a number vector.private static voiddensePlusMinusEquals(double[] add, double[] sub, NumberVector vec)Add to one, remove from another.NumberVectorDistance<? super V>getDistance()Returns the distance.TypeInformation[]getInputTypeRestriction()Get the input type restriction used for negotiating the data query.protected abstract LogginggetLogger()Get the (STATIC) logger for this class.protected static voidincrementalUpdateMean(double[] mean, NumberVector vec, int newsize, double op)Compute an incremental update for the mean.protected double[][]initialMeans(Relation<V> relation)Choose the initial means.protected static double[][]means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.static voidminusEquals(double[] sum, NumberVector vec)Similar to VMath.minusEquals, but accepts a number vector.protected static voidnearestMeans(double[][] cdist, int[][] cnum)Recompute the separation of cluster means.static voidplusEquals(double[] sum, NumberVector vec)Similar to VMath.plusEquals, but accepts a number vector.static voidplusMinusEquals(double[] add, double[] sub, NumberVector vec)Add to one, remove from another.voidsetDistance(NumberVectorDistance<? super V> distance)Set the distance function to use.voidsetInitializer(KMeansInitialization init)Set the initialization method.voidsetK(int k)Set the value of k.private static double[][]sparseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends SparseNumberVector> relation)Returns the mean vectors of the given clusters in the given database.private static voidsparsePlusEquals(double[] sum, SparseNumberVector vec)Similar to VMath.plusEquals, but for sparse number vectors.private static voidsparsePlusMinusEquals(double[] add, double[] sub, SparseNumberVector vec)Add to one, remove from another.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun
-
-
-
-
Field Detail
-
distance
protected NumberVectorDistance<? super V extends NumberVector> distance
Distance function used.
-
k
protected int k
Number of cluster centers to initialize.
-
maxiter
protected int maxiter
Maximum number of iterations
-
initializer
protected KMeansInitialization initializer
Method to choose initial means.
-
-
Constructor Detail
-
AbstractKMeans
public AbstractKMeans(int k, int maxiter, KMeansInitialization initializer)Constructor.- Parameters:
k- k parametermaxiter- Maxiter parameterinitializer- Function to generate the initial means
-
AbstractKMeans
public AbstractKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.- Parameters:
distance- distance functionk- k parametermaxiter- Maxiter parameterinitializer- Function to generate the initial means
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:AlgorithmGet the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestrictionin interfaceAlgorithm- Returns:
- Type restriction
-
initialMeans
protected double[][] initialMeans(Relation<V> relation)
Choose the initial means.- Parameters:
relation- Relation- Returns:
- Means
-
means
protected static double[][] means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)
Returns the mean vectors of the given clusters in the given database.- Parameters:
clusters- the clusters to compute the meansmeans- the recent meansrelation- the database containing the vectors- Returns:
- the mean vectors of the given clusters in the given database
-
denseMeans
private static double[][] denseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)
Returns the mean vectors of the given clusters in the given database.- Parameters:
clusters- the clusters to compute the meansmeans- the recent meansrelation- the database containing the vectors- Returns:
- the mean vectors of the given clusters in the given database
-
plusEquals
public static void plusEquals(double[] sum, NumberVector vec)Similar to VMath.plusEquals, but accepts a number vector.- Parameters:
sum- Aggregation arrayvec- Vector to add
-
densePlusEquals
private static void densePlusEquals(double[] sum, NumberVector vec)Similar to VMath.plusEquals, but accepts a number vector.- Parameters:
sum- Aggregation arrayvec- Vector to add
-
sparsePlusEquals
private static void sparsePlusEquals(double[] sum, SparseNumberVector vec)Similar to VMath.plusEquals, but for sparse number vectors.- Parameters:
sum- Aggregation arrayvec- Vector to add
-
minusEquals
public static void minusEquals(double[] sum, NumberVector vec)Similar to VMath.minusEquals, but accepts a number vector.- Parameters:
sum- Aggregation arrayvec- Vector to subtract
-
plusMinusEquals
public static void plusMinusEquals(double[] add, double[] sub, NumberVector vec)Add to one, remove from another.- Parameters:
add- Array to add tosub- Array to remove fromvec- Vector to subtract
-
densePlusMinusEquals
private static void densePlusMinusEquals(double[] add, double[] sub, NumberVector vec)Add to one, remove from another.- Parameters:
add- Array to add tosub- Array to remove fromvec- Vector to subtract
-
sparsePlusMinusEquals
private static void sparsePlusMinusEquals(double[] add, double[] sub, SparseNumberVector vec)Add to one, remove from another.- Parameters:
add- Array to add tosub- Array to remove fromvec- Vector to subtract
-
sparseMeans
private static double[][] sparseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends SparseNumberVector> relation)
Returns the mean vectors of the given clusters in the given database.- Parameters:
clusters- the clusters to compute the meansmeans- the recent meansrelation- the database containing the vectors- Returns:
- the mean vectors of the given clusters in the given database
-
nearestMeans
protected static void nearestMeans(double[][] cdist, int[][] cnum)Recompute the separation of cluster means.Used by sort, and our exponion implementation.
- Parameters:
cdist- Center-to-Center distancescnum- Center numbers
-
incrementalUpdateMean
protected static void incrementalUpdateMean(double[] mean, NumberVector vec, int newsize, double op)Compute an incremental update for the mean.- Parameters:
mean- Mean to updatevec- Object vectornewsize- (New) size of clusterop- Cluster size change / Weight change
-
setK
public void setK(int k)
Description copied from interface:KMeansSet the value of k. Needed for some types of nested k-means.
-
getDistance
public NumberVectorDistance<? super V> getDistance()
Description copied from interface:KMeansReturns the distance.- Specified by:
getDistancein interfaceKMeans<V extends NumberVector,M extends Model>- Returns:
- the distance
-
setDistance
public void setDistance(NumberVectorDistance<? super V> distance)
Description copied from interface:KMeansSet the distance function to use.- Specified by:
setDistancein interfaceKMeans<V extends NumberVector,M extends Model>- Parameters:
distance- Distance function.
-
setInitializer
public void setInitializer(KMeansInitialization init)
Description copied from interface:KMeansSet the initialization method.- Specified by:
setInitializerin interfaceKMeans<V extends NumberVector,M extends Model>- Parameters:
init- Initialization method
-
getLogger
protected abstract Logging getLogger()
Get the (STATIC) logger for this class.- Returns:
- the static logger
-
-