Uses of Package
elki.clustering.kmeans.initialization
-
Packages that use elki.clustering.kmeans.initialization Package Description elki.clustering.em.models elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids.initialization elki.clustering.uncertain Clustering algorithms for uncertain data.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
Classes in elki.clustering.kmeans.initialization used by elki.clustering.em.models Class Description KMeansInitialization Interface for initializing K-Means -
Classes in elki.clustering.kmeans.initialization used by elki.clustering.kmeans Class Description KMeansInitialization Interface for initializing K-MeansPredefined Run k-means with prespecified initial means. -
Classes in elki.clustering.kmeans.initialization used by elki.clustering.kmeans.initialization Class Description AbstractKMeansInitialization Abstract base class for common k-means initializations.AbstractKMeansInitialization.Par Parameterization class.AFKMC2 AFK-MC² initializationAFKMC2.Instance Abstract instance implementing the weight handling.AFKMC2.Par Parameterization class.FarthestPoints K-Means initialization by repeatedly choosing the farthest point (by the minimum distance to earlier points).FarthestPoints.Par Parameterization class.FarthestSumPoints K-Means initialization by repeatedly choosing the farthest point (by the sum of distances to previous objects).FirstK Initialize K-means by using the first k objects as initial means.KMC2 K-MC² initializationKMC2.Instance Abstract instance implementing the weight handling.KMC2.Par Parameterization class.KMeansInitialization Interface for initializing K-MeansKMeansPlusPlus K-Means++ initialization for k-means.KMeansPlusPlus.Instance Abstract instance implementing the weight handling.KMeansPlusPlus.NumberVectorInstance Instance for k-means, number vector based.Ostrovsky Ostrovsky initial means, a variant of k-means++ that is expected to give slightly better results on average, but only works for k-means and not for, e.g., PAM (k-medoids).Predefined Run k-means with prespecified initial means.RandomlyChosen Initialize K-means by randomly choosing k existing elements as initial cluster centers.RandomNormalGenerated Initialize k-means by generating random vectors (normal distributed with \(N(\mu,\sigma)\) in each dimension).RandomUniformGenerated Initialize k-means by generating random vectors (uniform, within the value range of the data set).SampleKMeans Initialize k-means by running k-means on a sample of the data set only.SphericalAFKMC2 Spherical K-Means++ initialization with markov chains.SphericalKMeansPlusPlus Spherical K-Means++ initialization for k-means. -
Classes in elki.clustering.kmeans.initialization used by elki.clustering.kmeans.parallel Class Description KMeansInitialization Interface for initializing K-Means -
Classes in elki.clustering.kmeans.initialization used by elki.clustering.kmeans.spherical Class Description KMeansInitialization Interface for initializing K-Means -
Classes in elki.clustering.kmeans.initialization used by elki.clustering.kmedoids.initialization Class Description AbstractKMeansInitialization.Par Parameterization class.KMeansInitialization Interface for initializing K-Means -
Classes in elki.clustering.kmeans.initialization used by elki.clustering.uncertain Class Description KMeansInitialization Interface for initializing K-Means -
Classes in elki.clustering.kmeans.initialization used by tutorial.clustering Class Description KMeansInitialization Interface for initializing K-Means