Uses of Interface
elki.clustering.kmeans.initialization.KMeansInitialization
-
Packages that use KMeansInitialization Package Description elki.clustering.em.models elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids.initialization elki.clustering.uncertain Clustering algorithms for uncertain data.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
-
Uses of KMeansInitialization in elki.clustering.em.models
Fields in elki.clustering.em.models declared as KMeansInitialization Modifier and Type Field Description protected KMeansInitializationDiagonalGaussianModelFactory. initializerClass to choose the initial meansprotected KMeansInitializationDiagonalGaussianModelFactory.Par. initializerInitialization methodprotected KMeansInitializationMultivariateGaussianModelFactory. initializerClass to choose the initial meansprotected KMeansInitializationMultivariateGaussianModelFactory.Par. initializerInitialization methodprotected KMeansInitializationSphericalGaussianModelFactory. initializerClass to choose the initial meansprotected KMeansInitializationSphericalGaussianModelFactory.Par. initializerInitialization methodprotected KMeansInitializationTextbookMultivariateGaussianModelFactory. initializerClass to choose the initial meansprotected KMeansInitializationTextbookMultivariateGaussianModelFactory.Par. initializerInitialization methodprotected KMeansInitializationTextbookSphericalGaussianModelFactory. initializerClass to choose the initial meansprotected KMeansInitializationTextbookSphericalGaussianModelFactory.Par. initializerInitialization methodprotected KMeansInitializationTwoPassMultivariateGaussianModelFactory. initializerClass to choose the initial meansprotected KMeansInitializationTwoPassMultivariateGaussianModelFactory.Par. initializerInitialization methodConstructors in elki.clustering.em.models with parameters of type KMeansInitialization Constructor Description DiagonalGaussianModelFactory(KMeansInitialization initializer)Constructor.MultivariateGaussianModelFactory(KMeansInitialization initializer)Constructor.SphericalGaussianModelFactory(KMeansInitialization initializer)Constructor.TextbookMultivariateGaussianModelFactory(KMeansInitialization initializer)Constructor.TextbookSphericalGaussianModelFactory(KMeansInitialization initializer)Constructor.TwoPassMultivariateGaussianModelFactory(KMeansInitialization initializer)Constructor. -
Uses of KMeansInitialization in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as KMeansInitialization Modifier and Type Field Description protected KMeansInitializationAbstractKMeans. initializerMethod to choose initial means.protected KMeansInitializationAbstractKMeans.Par. initializerInitialization method.(package private) KMeansInitializationFuzzyCMeans. initializerProduces initial cluster.(package private) KMeansInitializationFuzzyCMeans.Par. initializerK-Means init for initial cluster centersMethods in elki.clustering.kmeans with parameters of type KMeansInitialization Modifier and Type Method Description voidAbstractKMeans. setInitializer(KMeansInitialization init)voidBestOfMultipleKMeans. setInitializer(KMeansInitialization init)voidBisectingKMeans. setInitializer(KMeansInitialization init)voidKMeans. setInitializer(KMeansInitialization init)Set the initialization method.Constructors in elki.clustering.kmeans with parameters of type KMeansInitialization Constructor Description AbstractKMeans(int k, int maxiter, KMeansInitialization initializer)Constructor.AbstractKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.AnnulusKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.CompareMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.ElkanKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.ExponionKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.FuzzyCMeans(int k, int miniter, int maxiter, double delta, double m, boolean soft, KMeansInitialization initialization)Constructor.GMeans(NumberVectorDistance<? super V> distance, double critical, int k_min, int k_max, int maxiter, KMeans<V,M> innerKMeans, KMeansInitialization initializer, RandomFactory random)Constructor.HamerlyKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.HartiganWongKMeans(int k, KMeansInitialization initializer)Constructor.KDTreeFilteringKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, KDTreePruningKMeans.Split split, int leafsize)Constructor.KDTreePruningKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, KDTreePruningKMeans.Split split, int leafsize)Constructor.KMeansMinusMinus(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, double rate, boolean noiseFlag)Constructor.KMediansLloyd(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.LloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.MacQueenKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.ShallotKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SimplifiedElkanKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SingleAssignmentKMeans(NumberVectorDistance<? super V> distance, int k, KMeansInitialization initializer)Constructor.SortMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.XMeans(NumberVectorDistance<? super V> distance, int k_min, int k_max, int maxiter, KMeans<V,M> innerKMeans, KMeansInitialization initializer, KMeansQualityMeasure<V> informationCriterion, RandomFactory random)Constructor.YinYangKMeans(int k, int maxiter, KMeansInitialization initializer, int t)Constructor. -
Uses of KMeansInitialization in elki.clustering.kmeans.initialization
Classes in elki.clustering.kmeans.initialization that implement KMeansInitialization Modifier and Type Class Description classAbstractKMeansInitializationAbstract base class for common k-means initializations.classAFKMC2AFK-MC² initializationclassFarthestPoints<O>K-Means initialization by repeatedly choosing the farthest point (by the minimum distance to earlier points).classFarthestSumPoints<O>K-Means initialization by repeatedly choosing the farthest point (by the sum of distances to previous objects).classFirstK<O>Initialize K-means by using the first k objects as initial means.classKMC2K-MC² initializationclassKMeansPlusPlus<O>K-Means++ initialization for k-means.classOstrovskyOstrovsky initial means, a variant of k-means++ that is expected to give slightly better results on average, but only works for k-means and not for, e.g., PAM (k-medoids).classPredefinedRun k-means with prespecified initial means.classRandomlyChosen<O>Initialize K-means by randomly choosing k existing elements as initial cluster centers.classRandomNormalGeneratedInitialize k-means by generating random vectors (normal distributed with \(N(\mu,\sigma)\) in each dimension).classRandomUniformGeneratedInitialize k-means by generating random vectors (uniform, within the value range of the data set).classSampleKMeans<V extends NumberVector>Initialize k-means by running k-means on a sample of the data set only.classSphericalAFKMC2Spherical K-Means++ initialization with markov chains.classSphericalKMeansPlusPlus<O>Spherical K-Means++ initialization for k-means. -
Uses of KMeansInitialization in elki.clustering.kmeans.parallel
Constructors in elki.clustering.kmeans.parallel with parameters of type KMeansInitialization Constructor Description ParallelLloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor. -
Uses of KMeansInitialization in elki.clustering.kmeans.spherical
Constructors in elki.clustering.kmeans.spherical with parameters of type KMeansInitialization Constructor Description EuclideanSphericalElkanKMeans(int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.EuclideanSphericalHamerlyKMeans(int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.EuclideanSphericalSimplifiedElkanKMeans(int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SphericalElkanKMeans(int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SphericalHamerlyKMeans(int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SphericalKMeans(int k, int maxiter, KMeansInitialization initializer)Constructor.SphericalSimplifiedElkanKMeans(int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SphericalSimplifiedHamerlyKMeans(int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SphericalSingleAssignmentKMeans(int k, KMeansInitialization initializer)Constructor. -
Uses of KMeansInitialization in elki.clustering.kmedoids.initialization
Classes in elki.clustering.kmedoids.initialization that implement KMeansInitialization Modifier and Type Class Description classBUILD<O>PAM initialization for k-means (and of course, for PAM).classLAB<O>Linear approximative BUILD (LAB) initialization for FastPAM (and k-means).classParkJun<O>Initialization method proposed by Park and Jun. -
Uses of KMeansInitialization in elki.clustering.uncertain
Constructors in elki.clustering.uncertain with parameters of type KMeansInitialization Constructor Description CKMeans(NumberVectorDistance<? super NumberVector> distance, int k, int maxiter, KMeansInitialization initializer)Constructor that uses Lloyd's k-means algorithm. -
Uses of KMeansInitialization in tutorial.clustering
Fields in tutorial.clustering declared as KMeansInitialization Modifier and Type Field Description protected KMeansInitializationSameSizeKMeans.Par. initializerInitialization method.Constructors in tutorial.clustering with parameters of type KMeansInitialization Constructor Description SameSizeKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.
-