Package elki.clustering.kmeans
Class SortMeans<V extends NumberVector>
- java.lang.Object
-
- elki.clustering.kmeans.AbstractKMeans<V,KMeansModel>
-
- elki.clustering.kmeans.CompareMeans<V>
-
- elki.clustering.kmeans.SortMeans<V>
-
- Type Parameters:
V
- vector datatype
- All Implemented Interfaces:
Algorithm
,ClusteringAlgorithm<Clustering<KMeansModel>>
,KMeans<V,KMeansModel>
@Title("Sort-Means") @Reference(authors="S. J. Phillips", title="Acceleration of k-means and related clustering algorithms", booktitle="Proc. 4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX 2002)", url="https://doi.org/10.1007/3-540-45643-0_13", bibkey="DBLP:conf/alenex/Phillips02") public class SortMeans<V extends NumberVector> extends CompareMeans<V>
Sort-Means: Accelerated k-means by exploiting the triangle inequality and pairwise distances of means to prune candidate means (with sorting).Reference:
S. J. Phillips
Acceleration of k-means and related clustering algorithms
Proc. 4th Int. W. on Algorithm Engineering and Experiments (ALENEX 2002)- Since:
- 0.7.1
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description protected static class
SortMeans.Instance
Inner instance, storing state for a single data set.static class
SortMeans.Par<V extends NumberVector>
Parameterization class.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description private static Logging
LOG
The logger for this class.-
Fields inherited from class elki.clustering.kmeans.AbstractKMeans
distance, initializer, k, maxiter
-
Fields inherited from interface elki.clustering.kmeans.KMeans
DISTANCE_FUNCTION_ID, INIT_ID, K_ID, MAXITER_ID, SEED_ID, VARSTAT_ID
-
-
Constructor Summary
Constructors Constructor Description SortMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected Logging
getLogger()
Get the (STATIC) logger for this class.Clustering<KMeansModel>
run(Relation<V> relation)
Run the clustering algorithm.-
Methods inherited from class elki.clustering.kmeans.AbstractKMeans
getDistance, getInputTypeRestriction, incrementalUpdateMean, initialMeans, means, minusEquals, nearestMeans, plusEquals, plusMinusEquals, setDistance, setInitializer, setK
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun
-
-
-
-
Field Detail
-
LOG
private static final Logging LOG
The logger for this class.
-
-
Constructor Detail
-
SortMeans
public SortMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.- Parameters:
distance
- distance functionk
- k parametermaxiter
- Maxiter parameterinitializer
- Initialization method
-
-
Method Detail
-
run
public Clustering<KMeansModel> run(Relation<V> relation)
Description copied from interface:KMeans
Run the clustering algorithm.- Specified by:
run
in interfaceKMeans<V extends NumberVector,KMeansModel>
- Overrides:
run
in classCompareMeans<V extends NumberVector>
- Parameters:
relation
- Relation to process.- Returns:
- Clustering result
-
getLogger
protected Logging getLogger()
Description copied from class:AbstractKMeans
Get the (STATIC) logger for this class.- Overrides:
getLogger
in classCompareMeans<V extends NumberVector>
- Returns:
- the static logger
-
-