Uses of Interface
elki.clustering.kmeans.quality.KMeansQualityMeasure
-
Packages that use KMeansQualityMeasure Package Description elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.quality Quality measures for k-Means results. -
-
Uses of KMeansQualityMeasure in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as KMeansQualityMeasure Modifier and Type Field Description (package private) KMeansQualityMeasure<V>XMeans. informationCriterionInformation criterion to choose the better split.protected KMeansQualityMeasure<V>XMeans.Par. informationCriterionInformation criterion.protected KMeansQualityMeasure<? super V>BestOfMultipleKMeans.Par. qualityMeasureQuality measure.private KMeansQualityMeasure<? super V>BestOfMultipleKMeans. qualityMeasureQuality measure which should be used.Constructors in elki.clustering.kmeans with parameters of type KMeansQualityMeasure Constructor Description BestOfMultipleKMeans(int trials, KMeans<V,M> innerkMeans, KMeansQualityMeasure<? super V> qualityMeasure)Constructor.XMeans(NumberVectorDistance<? super V> distance, int k_min, int k_max, int maxiter, KMeans<V,M> innerKMeans, KMeansInitialization initializer, KMeansQualityMeasure<V> informationCriterion, RandomFactory random)Constructor. -
Uses of KMeansQualityMeasure in elki.clustering.kmeans.quality
Classes in elki.clustering.kmeans.quality that implement KMeansQualityMeasure Modifier and Type Class Description classAbstractKMeansQualityMeasure<O extends NumberVector>Base class for evaluating clusterings by information criteria (such as AIC or BIC).classAkaikeInformationCriterionAkaike Information Criterion (AIC).classAkaikeInformationCriterionXMeansAkaike Information Criterion (AIC).classBayesianInformationCriterionBayesian Information Criterion (BIC), also known as Schwarz criterion (SBC, SBIC) for the use with evaluating k-means results.classBayesianInformationCriterionXMeansBayesian Information Criterion (BIC), also known as Schwarz criterion (SBC, SBIC) for the use with evaluating k-means results.classBayesianInformationCriterionZhaoDifferent version of the BIC criterion.classWithinClusterMeanDistanceClass for computing the average overall distance.classWithinClusterVarianceClass for computing the variance in a clustering result (sum-of-squares).
-