Package elki.clustering.uncertain
Class CenterOfMassMetaClustering<C extends Clustering<?>>
- java.lang.Object
-
- elki.clustering.uncertain.CenterOfMassMetaClustering<C>
-
- Type Parameters:
C
- Clustering result type (inherited from inner algorithm)
- All Implemented Interfaces:
Algorithm
,ClusteringAlgorithm<C>
- Direct Known Subclasses:
CKMeans
@Reference(authors="Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Z\u00fcfle, Klaus Arthur Schmid, Arthur Zimek", title="A Framework for Clustering Uncertain Data", booktitle="Proceedings of the VLDB Endowment, 8(12)", url="http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf", bibkey="DBLP:journals/pvldb/SchubertKEZSZ15") public class CenterOfMassMetaClustering<C extends Clustering<?>> extends java.lang.Object implements ClusteringAlgorithm<C>
Center-of-mass meta clustering reduces uncertain objects to their center of mass, then runs a vector-oriented clustering algorithm on this data set.Reference:
Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle, Klaus Arthur Schmid, Arthur Zimek
A Framework for Clustering Uncertain Data
In Proceedings of the VLDB Endowment, 8(12), 2015.- Since:
- 0.7.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
CenterOfMassMetaClustering.Par<C extends Clustering<?>>
Parameterization class.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description protected ClusteringAlgorithm<C>
inner
The algorithm to be wrapped and run.
-
Constructor Summary
Constructors Constructor Description CenterOfMassMetaClustering(ClusteringAlgorithm<C> inner)
Constructor, quite trivial.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description TypeInformation[]
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.C
run(Relation<? extends UncertainObject> relation)
This run method will do the wrapping.protected C
runClusteringAlgorithm(java.lang.Object parent, DBIDs ids, DataStore<DoubleVector> store, int dim, java.lang.String title)
Run a clustering algorithm on a single instance.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun
-
-
-
-
Field Detail
-
inner
protected ClusteringAlgorithm<C extends Clustering<?>> inner
The algorithm to be wrapped and run.
-
-
Constructor Detail
-
CenterOfMassMetaClustering
public CenterOfMassMetaClustering(ClusteringAlgorithm<C> inner)
Constructor, quite trivial.- Parameters:
inner
- Primary clustering algorithm
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:Algorithm
Get the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestriction
in interfaceAlgorithm
- Returns:
- Type restriction
-
run
public C run(Relation<? extends UncertainObject> relation)
This run method will do the wrapping.- Parameters:
relation
- Data relation of uncertain objects- Returns:
- Clustering result
-
runClusteringAlgorithm
protected C runClusteringAlgorithm(java.lang.Object parent, DBIDs ids, DataStore<DoubleVector> store, int dim, java.lang.String title)
Run a clustering algorithm on a single instance.- Parameters:
parent
- Parent result to attach toids
- Object IDs to processstore
- Input datadim
- Dimensionalitytitle
- Title of relation- Returns:
- Clustering result
-
-