Uses of Class
elki.data.model.MeanModel
-
Packages that use MeanModel Package Description elki.clustering Clustering algorithms.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.hierarchical.birch BIRCH clustering.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.data.model Cluster models classes for various algorithms.elki.outlier.clustering Clustering based outlier detection.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
-
Uses of MeanModel in elki.clustering
Methods in elki.clustering that return types with arguments of type MeanModel Modifier and Type Method Description Clustering<MeanModel>
BetulaLeafPreClustering. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<MeanModel>
NaiveMeanShiftClustering. run(Relation<V> relation)
Run the mean-shift clustering algorithm. -
Uses of MeanModel in elki.clustering.em
Classes in elki.clustering.em with type parameters of type MeanModel Modifier and Type Class Description class
EM<O,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian Mixture Modeling (GMM), with optional MAP regularization.static class
EM.Par<O,M extends MeanModel>
Parameterization class. -
Uses of MeanModel in elki.clustering.hierarchical.birch
Methods in elki.clustering.hierarchical.birch that return types with arguments of type MeanModel Modifier and Type Method Description Clustering<MeanModel>
BIRCHLeafClustering. run(Relation<NumberVector> relation)
Run the clustering algorithm. -
Uses of MeanModel in elki.clustering.kmeans
Classes in elki.clustering.kmeans with type parameters of type MeanModel Modifier and Type Class Description class
BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel>
Run K-Means multiple times, and keep the best run.static class
BestOfMultipleKMeans.Par<V extends NumberVector,M extends MeanModel>
Parameterization class.class
BisectingKMeans<V extends NumberVector,M extends MeanModel>
The bisecting k-means algorithm works by starting with an initial partitioning into two clusters, then repeated splitting of the largest cluster to get additional clusters.static class
BisectingKMeans.Par<V extends NumberVector,M extends MeanModel>
Parameterization class.class
GMeans<V extends NumberVector,M extends MeanModel>
G-Means extends K-Means and estimates the number of centers with Anderson Darling Test.
Implemented as specialization of XMeans.static class
GMeans.Par<V extends NumberVector,M extends MeanModel>
Parameterization class.class
XMeans<V extends NumberVector,M extends MeanModel>
X-means: Extending K-means with Efficient Estimation on the Number of Clusters.static class
XMeans.Par<V extends NumberVector,M extends MeanModel>
Parameterization class.Methods in elki.clustering.kmeans that return types with arguments of type MeanModel Modifier and Type Method Description protected Clustering<MeanModel>
KMediansLloyd.Instance. buildMediansResult()
Clustering<MeanModel>
FuzzyCMeans. run(Relation<V> relation)
Runs Fuzzy C Means clustering on the given RelationClustering<MeanModel>
KMediansLloyd. run(Relation<V> relation)
Method parameters in elki.clustering.kmeans with type arguments of type MeanModel Modifier and Type Method Description protected double[][]
GMeans. splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation)
protected double[][]
XMeans. splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation)
Split an existing centroid into two initial centers. -
Uses of MeanModel in elki.clustering.kmeans.initialization
Method parameters in elki.clustering.kmeans.initialization with type arguments of type MeanModel Modifier and Type Method Description void
Predefined. setInitialClusters(java.util.List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means. -
Uses of MeanModel in elki.clustering.kmeans.quality
Method parameters in elki.clustering.kmeans.quality with type arguments of type MeanModel Modifier and Type Method Description static double
AbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionXMeans. logLikelihoodXMeans(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionZhao. logLikelihoodZhao(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static int
AbstractKMeansQualityMeasure. numberOfFreeParameters(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering)
Compute the number of free parameters.static int
AbstractKMeansQualityMeasure. numPoints(Clustering<? extends MeanModel> clustering)
Compute the number of points in a given set of clusters (which may be less than the complete data set for X-means!)<V extends NumberVector>
doubleAkaikeInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleAkaikeInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionZhao. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends O>
doubleKMeansQualityMeasure. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
Calculates and returns the quality measure.<V extends NumberVector>
doubleWithinClusterMeanDistance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleWithinClusterVariance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
static double
AbstractKMeansQualityMeasure. varianceContributionOfCluster(Cluster<? extends MeanModel> cluster, NumberVectorDistance<?> distance, Relation<? extends NumberVector> relation)
Variance contribution of a single cluster. -
Uses of MeanModel in elki.data.model
Subclasses of MeanModel in elki.data.model Modifier and Type Class Description class
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance Matrix.class
GeneratorModel
Cluster model for synthetically generated data.class
KMeansModel
Trivial subclass of theMeanModel
that indicates the clustering to be produced by k-means (so the Voronoi cell visualization is sensible).class
SubspaceModel
Model for Subspace Clusters. -
Uses of MeanModel in elki.outlier.clustering
Fields in elki.outlier.clustering with type parameters of type MeanModel Modifier and Type Field Description protected ClusteringAlgorithm<Clustering<MeanModel>>
CBLOF. clusteringAlgorithm
The clustering algorithm to use.protected ClusteringAlgorithm<Clustering<MeanModel>>
CBLOF.Par. clusteringAlgorithm
The clustering algorithm to use.Method parameters in elki.outlier.clustering with type arguments of type MeanModel Modifier and Type Method Description private void
CBLOF. computeCBLOFs(Relation<O> relation, WritableDoubleDataStore cblofs, DoubleMinMax cblofMinMax, java.util.List<? extends Cluster<MeanModel>> largeClusters, java.util.List<? extends Cluster<MeanModel>> smallClusters)
Compute the CBLOF scores for all the data.private double
CBLOF. computeLargeClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, NumberVector clusterMean, Cluster<MeanModel> cluster)
private double
CBLOF. computeSmallClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, java.util.List<NumberVector> largeClusterMeans, Cluster<MeanModel> cluster)
private int
CBLOF. getClusterBoundary(Relation<O> relation, java.util.List<? extends Cluster<MeanModel>> clusters)
Compute the boundary index separating the large cluster from the small cluster.Constructor parameters in elki.outlier.clustering with type arguments of type MeanModel Constructor Description CBLOF(NumberVectorDistance<? super O> distance, ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm, double alpha, double beta)
Constructor. -
Uses of MeanModel in tutorial.clustering
Methods in tutorial.clustering that return types with arguments of type MeanModel Modifier and Type Method Description Clustering<MeanModel>
SameSizeKMeans. run(Relation<V> relation)
Run k-means with cluster size constraints.
-