Class SpacefillingKNNPreprocessor<O extends NumberVector>
- java.lang.Object
-
- elki.index.preprocessed.knn.SpacefillingKNNPreprocessor<O>
-
- Type Parameters:
O- Vector type indexed
@Reference(authors="Erich Schubert, Arthur Zimek, Hans-Peter Kriegel", title="Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles", booktitle="Proc. 20th Int. Conf. Database Systems for Advanced Applications (DASFAA 2015)", url="https://doi.org/10.1007/978-3-319-18123-3_2", bibkey="DBLP:conf/dasfaa/SchubertZK15") public class SpacefillingKNNPreprocessor<O extends NumberVector> extends java.lang.Object implements KNNIndex<O>
Compute the nearest neighbors approximatively using space filling curves.This version computes the data projections and stores, then queries this data on-demand. This usually needs less memory (except for very small neighborhood sizes k) than
SpacefillingMaterializeKNNPreprocessor, but will also be slower.Reference:
Erich Schubert, Arthur Zimek, Hans-Peter Kriegel
Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles
Proc. 20th Int. Conf. Database Systems for Advanced Applications (DASFAA 2015)- Since:
- 0.7.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classSpacefillingKNNPreprocessor.Factory<V extends NumberVector>Index factory classprotected classSpacefillingKNNPreprocessor.SpaceFillingKNNQueryKNN Query processor for space filling curves
-
Field Summary
Fields Modifier and Type Field Description (package private) java.util.List<? extends SpatialSorter>curvegenSpatial curve generators(package private) java.util.List<java.util.List<SpatialPair<DBID,NumberVector>>>curvesCurve storageprivate static LoggingLOGClass logger(package private) MeanmeanMean number of distance computations(package private) intodimNumber of dimensions to use.(package private) WritableDataStore<int[]>positionsCurve position storage(package private) RandomProjectionFamilyprojRandom projection family to use.(package private) java.util.RandomrandomRandom number generator.protected Relation<O>relationThe representation we are bound to.(package private) intvariantsNumber of variants to generate for each curve(package private) doublewindowCurve window size
-
Constructor Summary
Constructors Constructor Description SpacefillingKNNPreprocessor(Relation<O> relation, java.util.List<? extends SpatialSorter> curvegen, double window, int variants, int odim, RandomProjectionFamily proj, java.util.Random random)Constructor.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description voidinitialize()Initialize the index.KNNSearcher<DBIDRef>kNNByDBID(DistanceQuery<O> distanceQuery, int maxk, int flags)Get a KNN query object for the given distance query and k.KNNSearcher<O>kNNByObject(DistanceQuery<O> distanceQuery, int maxk, int flags)Get a KNN query object for the given distance query and k.voidlogStatistics()Send statistics to the logger, if enabled.protected voidpreprocess()static int[]randomPermutation(int[] out, java.util.Random random)Perform a random permutation of the array, in-place.static int[]range(int start, int end)Initialize an integer value range.
-
-
-
Field Detail
-
LOG
private static final Logging LOG
Class logger
-
relation
protected final Relation<O extends NumberVector> relation
The representation we are bound to.
-
curvegen
final java.util.List<? extends SpatialSorter> curvegen
Spatial curve generators
-
window
final double window
Curve window size
-
variants
final int variants
Number of variants to generate for each curve
-
curves
java.util.List<java.util.List<SpatialPair<DBID,NumberVector>>> curves
Curve storage
-
positions
WritableDataStore<int[]> positions
Curve position storage
-
mean
Mean mean
Mean number of distance computations
-
odim
final int odim
Number of dimensions to use.
-
proj
RandomProjectionFamily proj
Random projection family to use.
-
random
java.util.Random random
Random number generator.
-
-
Constructor Detail
-
SpacefillingKNNPreprocessor
public SpacefillingKNNPreprocessor(Relation<O> relation, java.util.List<? extends SpatialSorter> curvegen, double window, int variants, int odim, RandomProjectionFamily proj, java.util.Random random)
Constructor.- Parameters:
relation- Relation to index.curvegen- Curve generatorswindow- Window multiplicatorvariants- Number of curve variants to generateodim- Number of dimensions to use -1 == all.proj- Random projection to applyrandom- Random number generator
-
-
Method Detail
-
initialize
public void initialize()
Description copied from interface:IndexInitialize the index. For static indexes, this is the moment the index is bulk loaded.- Specified by:
initializein interfaceIndex
-
preprocess
protected void preprocess()
-
range
public static int[] range(int start, int end)Initialize an integer value range.- Parameters:
start- Starting valueend- End value (exclusive)- Returns:
- Array of integers start..end, excluding end.
-
randomPermutation
public static int[] randomPermutation(int[] out, java.util.Random random)Perform a random permutation of the array, in-place. Knuth / Fisher-Yates style shuffle- Parameters:
out- Prefilled output array.random- Random generator.- Returns:
- Same array.
-
logStatistics
public void logStatistics()
Description copied from interface:IndexSend statistics to the logger, if enabled.Note: you must have set the logging level appropriately before initializing the index! Otherwise, the index might not have collected the desired statistics.
- Specified by:
logStatisticsin interfaceIndex
-
kNNByObject
public KNNSearcher<O> kNNByObject(DistanceQuery<O> distanceQuery, int maxk, int flags)
Description copied from interface:KNNIndexGet a KNN query object for the given distance query and k.This function MAY return null, when the given distance is not supported!
- Specified by:
kNNByObjectin interfaceKNNIndex<O extends NumberVector>- Parameters:
distanceQuery- Distance querymaxk- Maximum value of kflags- Hints for the optimizer- Returns:
- KNN Query object or
null
-
kNNByDBID
public KNNSearcher<DBIDRef> kNNByDBID(DistanceQuery<O> distanceQuery, int maxk, int flags)
Description copied from interface:KNNIndexGet a KNN query object for the given distance query and k.This function MAY return null, when the given distance is not supported!
- Specified by:
kNNByDBIDin interfaceKNNIndex<O extends NumberVector>- Parameters:
distanceQuery- Distance querymaxk- Maximum value of kflags- Hints for the optimizer- Returns:
- KNN Query object or
null
-
-