Package elki.outlier.distance
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
For methods based on local density, see package
elki.outlier.lof
instead.-
Class Summary Class Description AbstractDBOutlier<O> Simple distance based outlier detection algorithms.AbstractDBOutlier.Par<O> Parameterization class.DBOutlierDetection<O> Simple distanced based outlier detection algorithm.DBOutlierDetection.Par<O> Parameterization class.DBOutlierScore<O> Compute percentage of neighbors in the given neighborhood with size d.DBOutlierScore.Par<O> Parameterization class.HilOut<O extends NumberVector> Fast Outlier Detection in High Dimensional SpacesHilOut.HilFeature Hilbert representation of a single object.KNNDD<O> Nearest Neighbor Data Description.KNNDD.Par<O> Parameterization class.KNNOutlier<O> Outlier Detection based on the distance of an object to its k nearest neighbor.KNNOutlier.Par<O> Parameterization class.KNNSOS<O> kNN-based adaption of Stochastic Outlier Selection.KNNWeightOutlier<O> Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.KNNWeightOutlier.Par<O> Parameterization class.LocalIsolationCoefficient<O> The Local Isolation Coefficient is the sum of the kNN distance and the average distance to its k nearest neighbors.LocalIsolationCoefficient.Par<O> Parameterization class.ODIN<O> Outlier detection based on the in-degree of the kNN graph.ReferenceBasedOutlierDetection Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points.ReferenceBasedOutlierDetection.Par Parameterization class.SOS<O> Stochastic Outlier Selection. -
Enum Summary Enum Description HilOut.ScoreType Type of output: all scores (upper bounds) or top n only