Package elki.outlier.intrinsic
Class IDOS<O>
- java.lang.Object
-
- elki.outlier.intrinsic.IDOS<O>
-
- Type Parameters:
O
- Object type
- All Implemented Interfaces:
Algorithm
,OutlierAlgorithm
@Title("IDOS: Intrinsic Dimensional Outlier Score") @Reference(authors="Jonathan von Br\u00fcnken, Michael E. Houle, Arthur Zimek", title="Intrinsic Dimensional Outlier Detection in High-Dimensional Data", booktitle="NII Technical Report (NII-2015-003E)", url="http://www.nii.ac.jp/TechReports/15-003E.html", bibkey="tr/nii/BrunkenHZ15") public class IDOS<O> extends java.lang.Object implements OutlierAlgorithm
Intrinsic Dimensional Outlier Detection in High-Dimensional Data.Reference:
Jonathan von Brünken, Michael E. Houle, Arthur Zimek
Intrinsic Dimensional Outlier Detection in High-Dimensional Data
NII Technical Report (NII-2015-003E)- Since:
- 0.7.0
- Author:
- Jonathan von Brünken, Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
IDOS.Par<O>
Parameterization class.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description protected Distance<? super O>
distance
Distance function used.protected IntrinsicDimensionalityEstimator<? super O>
estimator
Estimator for intrinsic dimensionality.protected int
k_c
kNN for the context set (ID computation).protected int
k_r
kNN for the reference set.private static Logging
LOG
The logger for this class.
-
Constructor Summary
Constructors Constructor Description IDOS(Distance<? super O> distance, IntrinsicDimensionalityEstimator<? super O> estimator, int kc, int kr)
Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected DoubleDataStore
computeIDOS(DBIDs ids, KNNSearcher<DBIDRef> knnQ, DoubleDataStore intDims, DoubleMinMax idosminmax)
Computes all IDOS scores.protected DoubleDataStore
computeIDs(DBIDs ids, KNNSearcher<DBIDRef> knnQ, DistanceQuery<O> distQ)
Computes all IDsTypeInformation[]
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.OutlierResult
run(Relation<O> relation)
Run the algorithm-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.outlier.OutlierAlgorithm
autorun
-
-
-
-
Field Detail
-
LOG
private static final Logging LOG
The logger for this class.
-
k_c
protected int k_c
kNN for the context set (ID computation).
-
k_r
protected int k_r
kNN for the reference set.
-
estimator
protected IntrinsicDimensionalityEstimator<? super O> estimator
Estimator for intrinsic dimensionality.
-
-
Constructor Detail
-
IDOS
public IDOS(Distance<? super O> distance, IntrinsicDimensionalityEstimator<? super O> estimator, int kc, int kr)
Constructor.- Parameters:
distance
- the distance function to useestimator
- Estimator for intrinsic dimensionalitykc
- the context set size for the ID computationkr
- the neighborhood size to use in score computation
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:Algorithm
Get the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestriction
in interfaceAlgorithm
- Returns:
- Type restriction
-
run
public OutlierResult run(Relation<O> relation)
Run the algorithm- Parameters:
relation
- Data relation- Returns:
- Outlier result
-
computeIDs
protected DoubleDataStore computeIDs(DBIDs ids, KNNSearcher<DBIDRef> knnQ, DistanceQuery<O> distQ)
Computes all IDs- Parameters:
ids
- the DBIDs to processknnQ
- the KNN querydistQ
- the distance query- Returns:
- The computed intrinsic dimensionalities.
-
computeIDOS
protected DoubleDataStore computeIDOS(DBIDs ids, KNNSearcher<DBIDRef> knnQ, DoubleDataStore intDims, DoubleMinMax idosminmax)
Computes all IDOS scores.- Parameters:
ids
- the DBIDs to processknnQ
- the KNN queryintDims
- Precomputed intrinsic dimensionalitiesidosminmax
- Output of minimum and maximum, for metadata- Returns:
- ID scores
-
-