Class CTLuMoranScatterplotOutlier<N>

  • Type Parameters:
    N - Neighborhood type
    All Implemented Interfaces:
    Algorithm, OutlierAlgorithm

    @Title("Moran Scatterplot Outlier")
    @Description("Spatial Outlier detection based on the standardized deviation from the local means.")
    @Reference(authors="S. Shekhar, C.-T. Lu, P. Zhang",
               title="A Unified Approach to Detecting Spatial Outliers",
               booktitle="GeoInformatica 7-2, 2003",
               url="https://doi.org/10.1023/A:1023455925009",
               bibkey="DBLP:journals/geoinformatica/ShekharLZ03")
    public class CTLuMoranScatterplotOutlier<N>
    extends AbstractNeighborhoodOutlier<N>
    Moran scatterplot outliers, based on the standardized deviation from the local and global means. In contrast to the definition given in the reference, we use this as a ranking outlier detection by not applying the signedness test, but by using the score (- localZ) * (Average localZ of Neighborhood) directly. This allows us to differentiate a bit between stronger and weaker outliers.

    Reference:

    S. Shekhar, C.-T. Lu, P. Zhang
    A Unified Approach to Detecting Spatial Outliers
    GeoInformatica 7-2, 2003

    Moran scatterplot is a plot of normalized attribute values against the neighborhood average of normalized attribute values. Spatial Objects on the upper left or lower right are Spatial Outliers.

    Since:
    0.4.0
    Author:
    Ahmed Hettab
    • Constructor Detail

      • CTLuMoranScatterplotOutlier

        public CTLuMoranScatterplotOutlier​(NeighborSetPredicate.Factory<N> npredf)
        Constructor.
        Parameters:
        npredf - Neighborhood
    • Method Detail

      • getInputTypeRestriction

        public TypeInformation[] getInputTypeRestriction()
        Description copied from interface: Algorithm
        Get the input type restriction used for negotiating the data query.
        Returns:
        Type restriction
      • run

        public OutlierResult run​(Database database,
                                 Relation<N> nrel,
                                 Relation<? extends NumberVector> relation)
        Main method.
        Parameters:
        database - Database
        nrel - Neighborhood relation
        relation - Data relation (1d!)
        Returns:
        Outlier detection result