Package elki.utilities.scaling.outlier
Class MinusLogGammaScaling
- java.lang.Object
-
- elki.utilities.scaling.outlier.OutlierGammaScaling
-
- elki.utilities.scaling.outlier.MinusLogGammaScaling
-
- All Implemented Interfaces:
OutlierScaling
,ScalingFunction
@Reference(authors="Hans-Peter Kriegel, Peer Kr\u00f6ger, Erich Schubert, Arthur Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM 2011)", url="https://doi.org/10.1137/1.9781611972818.2", bibkey="DBLP:conf/sdm/KriegelKSZ11") public class MinusLogGammaScaling extends OutlierGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF.Reference:
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Interpreting and Unifying Outlier Scores
Proc. 11th SIAM International Conference on Data Mining (SDM 2011)- Since:
- 0.3
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
MinusLogGammaScaling.Par
Parameterization class.
-
Constructor Summary
Constructors Constructor Description MinusLogGammaScaling()
Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be called.protected double
preScale(double score)
Normalize data if necessary.-
Methods inherited from class elki.utilities.scaling.outlier.OutlierGammaScaling
getMax, getMin, getScaled, prepare
-
-
-
-
Method Detail
-
preScale
protected double preScale(double score)
Description copied from class:OutlierGammaScaling
Normalize data if necessary.Note: this is overridden by
MinusLogGammaScaling
!- Overrides:
preScale
in classOutlierGammaScaling
- Parameters:
score
- Original score- Returns:
- Normalized score.
-
prepare
public void prepare(OutlierResult or)
Description copied from interface:OutlierScaling
Prepare is called once for each data set, before getScaled() will be called. This function can be used to extract global parameters such as means, minimums or maximums from the outlier scores.- Specified by:
prepare
in interfaceOutlierScaling
- Overrides:
prepare
in classOutlierGammaScaling
- Parameters:
or
- Outlier result to use
-
-