Package elki.utilities.scaling.outlier
Class MinusLogGammaScaling
- java.lang.Object
-
- elki.utilities.scaling.outlier.OutlierGammaScaling
-
- elki.utilities.scaling.outlier.MinusLogGammaScaling
-
- All Implemented Interfaces:
OutlierScaling,ScalingFunction
@Reference(authors="Hans-Peter Kriegel, Peer Kr\u00f6ger, Erich Schubert, Arthur Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM 2011)", url="https://doi.org/10.1137/1.9781611972818.2", bibkey="DBLP:conf/sdm/KriegelKSZ11") public class MinusLogGammaScaling extends OutlierGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF.Reference:
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Interpreting and Unifying Outlier Scores
Proc. 11th SIAM International Conference on Data Mining (SDM 2011)- Since:
- 0.3
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classMinusLogGammaScaling.ParParameterization class.
-
Constructor Summary
Constructors Constructor Description MinusLogGammaScaling()Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voidprepare(OutlierResult or)Prepare is called once for each data set, before getScaled() will be called.protected doublepreScale(double score)Normalize data if necessary.-
Methods inherited from class elki.utilities.scaling.outlier.OutlierGammaScaling
getMax, getMin, getScaled, prepare
-
-
-
-
Method Detail
-
preScale
protected double preScale(double score)
Description copied from class:OutlierGammaScalingNormalize data if necessary.Note: this is overridden by
MinusLogGammaScaling!- Overrides:
preScalein classOutlierGammaScaling- Parameters:
score- Original score- Returns:
- Normalized score.
-
prepare
public void prepare(OutlierResult or)
Description copied from interface:OutlierScalingPrepare is called once for each data set, before getScaled() will be called. This function can be used to extract global parameters such as means, minimums or maximums from the outlier scores.- Specified by:
preparein interfaceOutlierScaling- Overrides:
preparein classOutlierGammaScaling- Parameters:
or- Outlier result to use
-
-