Package elki.clustering.dbscan
Class GriDBSCAN<V extends NumberVector>
- java.lang.Object
-
- elki.clustering.dbscan.GriDBSCAN<V>
-
- Type Parameters:
V- the type of vector the algorithm is applied to
- All Implemented Interfaces:
Algorithm,ClusteringAlgorithm<Clustering<Model>>
@Title("GriDBSCAN: Using Grid for Accelerating Density-Based Clustering") @Reference(authors="S. Mahran, K. Mahar", title="Using grid for accelerating density-based clustering", booktitle="8th IEEE Int. Conf. on Computer and Information Technology", url="https://doi.org/10.1109/CIT.2008.4594646", bibkey="DBLP:conf/IEEEcit/MahranM08") public class GriDBSCAN<V extends NumberVector> extends java.lang.Object implements ClusteringAlgorithm<Clustering<Model>>
Using Grid for Accelerating Density-Based Clustering.An accelerated DBSCAN version for numerical data and Lp-norms only, by partitioning the data set into overlapping grid cells. For best efficiency, the overlap of the grid cells must be chosen well. The authors suggest a grid width of 10 times epsilon.
Because of partitioning the data, this version does not make use of indexes.
Reference:
S. Mahran, K. Mahar
Using grid for accelerating density-based clustering
In 8th IEEE Int. Conf. on Computer and Information Technology, 2008.- Since:
- 0.7.1
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description protected static classGriDBSCAN.Instance<V extends NumberVector>Instance, for a single run.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description protected Distance<? super V>distanceDistance function used.protected doubleepsilonHolds the epsilon radius threshold.protected doublegridwidthWidth of the grid cells.private static LoggingLOGThe logger for this class.protected intminptsHolds the minimum cluster size.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description TypeInformation[]getInputTypeRestriction()Get the input type restriction used for negotiating the data query.Clustering<Model>run(Relation<V> relation)Performs the DBSCAN algorithm on the given database.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun
-
-
-
-
Field Detail
-
LOG
private static final Logging LOG
The logger for this class.
-
distance
protected Distance<? super V extends NumberVector> distance
Distance function used.
-
epsilon
protected double epsilon
Holds the epsilon radius threshold.
-
minpts
protected int minpts
Holds the minimum cluster size.
-
gridwidth
protected double gridwidth
Width of the grid cells. Must be at least 2 epsilon!
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:AlgorithmGet the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestrictionin interfaceAlgorithm- Returns:
- Type restriction
-
run
public Clustering<Model> run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.
-
-