Package elki.distance
Interface Distance<O>
-
- Type Parameters:
O- Object type
- All Known Subinterfaces:
ClusteringDistanceSimilarity,DBIDDistance,DBIDRangeDistance,DimensionSelectingSubspaceDistance<O>,IndexBasedDistance<O>,Norm<O>,NumberVectorDistance<O>,PrimitiveDistance<O>,SpatialPrimitiveDistance<V>,WeightedNumberVectorDistance<V>
- All Known Implementing Classes:
AbsolutePearsonCorrelationDistance,AbsoluteUncenteredCorrelationDistance,AbstractDatabaseDistance,AbstractDBIDRangeDistance,AbstractDimensionsSelectingDistance,AbstractEditDistance,AbstractIndexBasedDistance,AbstractNumberVectorDistance,AbstractSetDistance,AbstractSimilarityAdapter,ArcCosineDistance,ArcCosineUnitlengthDistance,ArccosSimilarityAdapter,BrayCurtisDistance,CanberraDistance,ChiDistance,ChiSquaredDistance,ClarkDistance,ClusteringAdjustedRandIndexSimilarity,ClusteringBCubedF1Similarity,ClusteringFowlkesMallowsSimilarity,ClusteringRandIndexSimilarity,ClusterIntersectionSimilarity,ClusterJaccardSimilarity,CosineDistance,CosineUnitlengthDistance,DerivativeDTWDistance,DimensionSelectingLatLngDistance,DiskCacheBasedDoubleDistance,DiskCacheBasedFloatDistance,DTWDistance,EDRDistance,ERPDistance,EuclideanDistance,FileBasedSparseDoubleDistance,FileBasedSparseFloatDistance,FisherRaoDistance,HammingDistance,HellingerDistance,HistogramIntersectionDistance,HistogramMatchDistance,HSBHistogramQuadraticDistance,JaccardSimilarityDistance,JeffreyDivergenceDistance,JensenShannonDivergenceDistance,KolmogorovSmirnovDistance,Kulczynski1Similarity,KullbackLeiblerDivergenceAsymmetricDistance,KullbackLeiblerDivergenceReverseAsymmetricDistance,LatLngDistance,LCSSDistance,LevenshteinDistance,LinearKernel,LinearSimilarityAdapter,LngLatDistance,LnSimilarityAdapter,LPIntegerNormDistance,LPNormDistance,MahalanobisDistance,ManhattanDistance,MatrixWeightedQuadraticDistance,MaximumDistance,MinimumDistance,MultiLPNorm,NormalizedLevenshteinDistance,OnedimensionalDistance,PearsonCorrelationDistance,PolynomialKernel,RandomStableDistance,RGBHistogramQuadraticDistance,SharedNearestNeighborJaccardDistance,SparseEuclideanDistance,SparseLPNormDistance,SparseManhattanDistance,SparseMaximumDistance,SparseSquaredEuclideanDistance,SqrtCosineDistance,SqrtCosineUnitlengthDistance,SqrtJensenShannonDivergenceDistance,SquaredEuclideanDistance,SquaredPearsonCorrelationDistance,SquaredUncenteredCorrelationDistance,SubspaceEuclideanDistance,SubspaceLPNormDistance,SubspaceManhattanDistance,SubspaceMaximumDistance,TriangularDiscriminationDistance,TriangularDistance,TutorialDistance,UncenteredCorrelationDistance,WeightedCanberraDistance,WeightedEuclideanDistance,WeightedLPNormDistance,WeightedManhattanDistance,WeightedMaximumDistance,WeightedPearsonCorrelationDistance,WeightedSquaredEuclideanDistance,WeightedSquaredPearsonCorrelationDistance
public interface Distance<O>Base interface for any kind of distances.- Since:
- 0.1
- Author:
- Erich Schubert
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description TypeInformationgetInputTypeRestriction()Get the input data type of the function.<T extends O>
DistanceQuery<T>instantiate(Relation<T> relation)Instantiate with a database to get the actual distance query.default booleanisMetric()Is this distance function metric (satisfy the triangle inequality)default booleanisSquared()Squared distances, that would become metric after square root.default booleanisSymmetric()Is this function symmetric?
-
-
-
Method Detail
-
isSymmetric
default boolean isSymmetric()
Is this function symmetric?- Returns:
truewhen symmetric
-
isMetric
default boolean isMetric()
Is this distance function metric (satisfy the triangle inequality)- Returns:
truewhen metric.
-
isSquared
default boolean isSquared()
Squared distances, that would become metric after square root.E.g. squared Euclidean.
- Returns:
truewhen squared.
-
getInputTypeRestriction
TypeInformation getInputTypeRestriction()
Get the input data type of the function.- Returns:
- Type restriction
-
instantiate
<T extends O> DistanceQuery<T> instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query.- Parameters:
relation- The representation to use- Returns:
- Actual distance query.
-
-