Package elki.similarity.cluster
Class ClusteringBCubedF1Similarity
- java.lang.Object
-
- elki.similarity.cluster.ClusteringBCubedF1Similarity
-
- All Implemented Interfaces:
Distance<Clustering<?>>,PrimitiveDistance<Clustering<?>>,ClusteringDistanceSimilarity,NormalizedSimilarity<Clustering<?>>,PrimitiveSimilarity<Clustering<?>>,Similarity<Clustering<?>>
@Reference(authors="A. Bagga, B. Baldwin", title="Entity-based cross-document coreferencing using the Vector Space Model", booktitle="Proc. 17th Int. Conf. on Computational Linguistics (COLING \'98)", url="https://doi.org/10.3115/980451.980859", bibkey="doi:10.3115/980451.980859") public class ClusteringBCubedF1Similarity extends java.lang.Object implements ClusteringDistanceSimilarity, NormalizedSimilarity<Clustering<?>>
Measure the similarity of clusters via the BCubed F1 Index.Reference:
A. Bagga, B. Baldwin
Entity-based cross-document coreferencing using the Vector Space Model
Proc. 17th Int. Conf. on Computational Linguistics (COLING '98)- Since:
- 0.7.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classClusteringBCubedF1Similarity.ParParameterization class.
-
Field Summary
Fields Modifier and Type Field Description static ClusteringBCubedF1SimilaritySTATICStatic instance.
-
Constructor Summary
Constructors Constructor Description ClusteringBCubedF1Similarity()Constructor - use the static instanceSTATIC!
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description doubledistance(Clustering<?> o1, Clustering<?> o2)Computes the distance between two given DatabaseObjects according to this distance function.SimpleTypeInformation<? super Clustering<?>>getInputTypeRestriction()Get the input data type of the function.<T extends Clustering<?>>
DistanceSimilarityQuery<T>instantiate(Relation<T> relation)Instantiate with a representation to get the actual similarity query.booleanisMetric()Is this distance function metric (satisfy the triangle inequality)doublesimilarity(Clustering<?> o1, Clustering<?> o2)Computes the similarity between two given DatabaseObjects according to this similarity function.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.similarity.cluster.ClusteringDistanceSimilarity
isSymmetric
-
-
-
-
Field Detail
-
STATIC
public static final ClusteringBCubedF1Similarity STATIC
Static instance.
-
-
Constructor Detail
-
ClusteringBCubedF1Similarity
public ClusteringBCubedF1Similarity()
Constructor - use the static instanceSTATIC!
-
-
Method Detail
-
similarity
public double similarity(Clustering<?> o1, Clustering<?> o2)
Description copied from interface:PrimitiveSimilarityComputes the similarity between two given DatabaseObjects according to this similarity function.- Specified by:
similarityin interfacePrimitiveSimilarity<Clustering<?>>- Parameters:
o1- first DatabaseObjecto2- second DatabaseObject- Returns:
- the similarity between two given DatabaseObjects according to this similarity function
-
distance
public double distance(Clustering<?> o1, Clustering<?> o2)
Description copied from interface:PrimitiveDistanceComputes the distance between two given DatabaseObjects according to this distance function.- Specified by:
distancein interfacePrimitiveDistance<Clustering<?>>- Parameters:
o1- first DatabaseObjecto2- second DatabaseObject- Returns:
- the distance between two given DatabaseObjects according to this distance function
-
isMetric
public boolean isMetric()
Description copied from interface:DistanceIs this distance function metric (satisfy the triangle inequality)- Specified by:
isMetricin interfaceDistance<Clustering<?>>- Returns:
truewhen metric.
-
instantiate
public <T extends Clustering<?>> DistanceSimilarityQuery<T> instantiate(Relation<T> relation)
Description copied from interface:SimilarityInstantiate with a representation to get the actual similarity query.- Specified by:
instantiatein interfaceClusteringDistanceSimilarity- Specified by:
instantiatein interfaceDistance<Clustering<?>>- Specified by:
instantiatein interfacePrimitiveDistance<Clustering<?>>- Specified by:
instantiatein interfacePrimitiveSimilarity<Clustering<?>>- Specified by:
instantiatein interfaceSimilarity<Clustering<?>>- Parameters:
relation- Representation to use- Returns:
- Actual distance query.
-
getInputTypeRestriction
public SimpleTypeInformation<? super Clustering<?>> getInputTypeRestriction()
Description copied from interface:SimilarityGet the input data type of the function.- Specified by:
getInputTypeRestrictionin interfaceDistance<Clustering<?>>- Specified by:
getInputTypeRestrictionin interfacePrimitiveDistance<Clustering<?>>- Specified by:
getInputTypeRestrictionin interfaceSimilarity<Clustering<?>>- Returns:
- Type restriction
-
-