| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms
 
 Clustering algorithms are supposed to implement the
  
Algorithm-Interface. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.em | 
 Expectation-Maximization clustering algorithm. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch | 
 BIRCH clustering. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization | 
 Initialization strategies for k-means. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality | 
 Quality measures for k-Means results. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.clustering | 
 Clustering based outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.data.model | 
 Cluster models classes for various algorithms 
 | 
| tutorial.clustering | 
 Classes from the tutorial on implementing a custom k-means variation 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<MeanModel> | 
NaiveMeanShiftClustering.run(Database database,
   Relation<V> relation)
Run the mean-shift clustering algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractEMModelFactory<V extends NumberVector,M extends MeanModel>
Abstract base class for initializing EM. 
 | 
class  | 
EM<V extends NumberVector,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
 Mixture Modeling (GMM), with optional MAP regularization. 
 | 
static class  | 
EM.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class. 
 | 
interface  | 
EMClusterModel<M extends MeanModel>
Models useable in EM clustering. 
 | 
interface  | 
EMClusterModelFactory<V extends NumberVector,M extends MeanModel>
Factory for initializing the EM models. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<MeanModel> | 
BIRCHLeafClustering.run(Relation<NumberVector> relation)
Run the clustering algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel>
Run K-Means multiple times, and keep the best run. 
 | 
static class  | 
BestOfMultipleKMeans.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class. 
 | 
class  | 
KMeansBisecting<V extends NumberVector,M extends MeanModel>
The bisecting k-means algorithm works by starting with an initial
 partitioning into two clusters, then repeated splitting of the largest
 cluster to get additional clusters. 
 | 
static class  | 
KMeansBisecting.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class. 
 | 
class  | 
XMeans<V extends NumberVector,M extends MeanModel>
X-means: Extending K-means with Efficient Estimation on the Number of
 Clusters. 
 | 
static class  | 
XMeans.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected Clustering<MeanModel> | 
KMediansLloyd.Instance.buildMediansResult()  | 
Clustering<MeanModel> | 
KMediansLloyd.run(Database database,
   Relation<V> relation)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected double[][] | 
XMeans.splitCentroid(Cluster<? extends MeanModel> parentCluster,
             Relation<V> relation)
Split an existing centroid into two initial centers. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
PredefinedInitialMeans.setInitialClusters(java.util.List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <V extends NumberVector> | 
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
             Clustering<? extends MeanModel> clustering,
             NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering. 
 | 
static <V extends NumberVector> | 
BayesianInformationCriterionZhao.logLikelihoodZhao(Relation<V> relation,
                 Clustering<? extends MeanModel> clustering,
                 NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering. 
 | 
static int | 
AbstractKMeansQualityMeasure.numberOfFreeParameters(Relation<? extends NumberVector> relation,
                      Clustering<? extends MeanModel> clustering)
Compute the number of free parameters. 
 | 
static int | 
AbstractKMeansQualityMeasure.numPoints(Clustering<? extends MeanModel> clustering)
Compute the number of points in a given set of clusters (which may be
 less than the complete data set for X-means!) 
 | 
<V extends NumberVector> | 
BayesianInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector> | 
BayesianInformationCriterionZhao.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector> | 
WithinClusterVarianceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector> | 
AkaikeInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector> | 
WithinClusterMeanDistanceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends O> | 
KMeansQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)
Calculates and returns the quality measure. 
 | 
static <V extends NumberVector> | 
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
                 NumberVectorDistanceFunction<? super V> distanceFunction,
                 Relation<V> relation)
Variance contribution of a single cluster. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected ClusteringAlgorithm<Clustering<MeanModel>> | 
CBLOF.clusteringAlgorithm
The clustering algorithm to use. 
 | 
protected ClusteringAlgorithm<Clustering<MeanModel>> | 
CBLOF.Parameterizer.clusteringAlgorithm
The clustering algorithm to use. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
CBLOF.computeCBLOFs(Relation<O> relation,
             NumberVectorDistanceFunction<? super O> distance,
             WritableDoubleDataStore cblofs,
             DoubleMinMax cblofMinMax,
             java.util.List<? extends Cluster<MeanModel>> largeClusters,
             java.util.List<? extends Cluster<MeanModel>> smallClusters)
Compute the CBLOF scores for all the data. 
 | 
private void | 
CBLOF.computeCBLOFs(Relation<O> relation,
             NumberVectorDistanceFunction<? super O> distance,
             WritableDoubleDataStore cblofs,
             DoubleMinMax cblofMinMax,
             java.util.List<? extends Cluster<MeanModel>> largeClusters,
             java.util.List<? extends Cluster<MeanModel>> smallClusters)
Compute the CBLOF scores for all the data. 
 | 
private double | 
CBLOF.computeLargeClusterCBLOF(O obj,
                        NumberVectorDistanceFunction<? super O> distanceQuery,
                        NumberVector clusterMean,
                        Cluster<MeanModel> cluster)  | 
private double | 
CBLOF.computeSmallClusterCBLOF(O obj,
                        NumberVectorDistanceFunction<? super O> distance,
                        java.util.List<NumberVector> largeClusterMeans,
                        Cluster<MeanModel> cluster)  | 
private int | 
CBLOF.getClusterBoundary(Relation<O> relation,
                  java.util.List<? extends Cluster<MeanModel>> clusters)
Compute the boundary index separating the large cluster from the small
 cluster. 
 | 
| Constructor and Description | 
|---|
CBLOF(NumberVectorDistanceFunction<? super O> distanceFunction,
     ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm,
     double alpha,
     double beta)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance
 Matrix. 
 | 
class  | 
GeneratorModel
Cluster model for synthetically generated data. 
 | 
class  | 
KMeansModel
Trivial subclass of the  
MeanModel that indicates the clustering to be
 produced by k-means (so the Voronoi cell visualization is sensible). | 
class  | 
SubspaceModel
Model for Subspace Clusters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<MeanModel> | 
SameSizeKMeansAlgorithm.run(Database database,
   Relation<V> relation)
Run k-means with cluster size constraints. 
 | 
Copyright © 2019 ELKI Development Team. License information.