| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | 
 Generalized DBSCAN
 
 Generalized DBSCAN is an abstraction of the original DBSCAN idea,
 that allows the use of arbitrary "neighborhood" and "core point" predicates. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased | 
 Angle-based outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.clustering | 
 Clustering based outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic | 
 Outlier detection algorithms based on intrinsic dimensionality. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.lof | 
 LOF family of outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.projection | 
 Data projections (see also preprocessing filters for basic projections). 
 | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | 
 Statistical analysis algorithms. 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise | 
 Normalizations operating on columns / variates; where each column is treated independently. 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.transform | 
 Data space transformations 
 | 
| de.lmu.ifi.dbs.elki.evaluation.clustering | 
 Evaluation of clustering results 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | 
 Indexes providing KNN and rKNN data. 
 | 
| de.lmu.ifi.dbs.elki.math | 
 Mathematical operations and utilities used throughout the framework 
 | 
| de.lmu.ifi.dbs.elki.math.geometry | 
 Algorithms from computational geometry 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.dependence | 
 Statistical measures of dependence, such as correlation 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator | 
 Estimators for statistical distributions. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.tests | 
 Statistical tests 
 | 
| de.lmu.ifi.dbs.elki.parallel.processor | 
 Processor API of ELKI, and some essential shared processors. 
 | 
| de.lmu.ifi.dbs.elki.utilities.scaling | 
 Scaling functions: linear, logarithmic, gamma, clipping, ... 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| Mean
 Compute the mean using a numerically stable online algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| MeanVarianceMinMax
 Class collecting mean, variance, minimum and maximum statistics. 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| Mean
 Compute the mean using a numerically stable online algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| IntegerMinMax
 Class to find the minimum and maximum int values in data. 
 | 
| Mean
 Compute the mean using a numerically stable online algorithm. 
 | 
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| MeanVarianceMinMax
 Class collecting mean, variance, minimum and maximum statistics. 
 | 
| SinCosTable
 Class to precompute / cache Sinus and Cosinus values. 
 | 
| StatisticalMoments
 Track various statistical moments, including mean, variance, skewness and
 kurtosis. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| SinCosTable
 Class to precompute / cache Sinus and Cosinus values. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| StatisticalMoments
 Track various statistical moments, including mean, variance, skewness and
 kurtosis. 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
Copyright © 2019 ELKI Development Team. License information.