| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask
 main routine. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms
 
 Clustering algorithms are supposed to implement the
  
Algorithm-Interface. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.em | 
 Expectation-Maximization clustering algorithm. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | 
 Hierarchical agglomerative clustering (HAC). 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch | 
 BIRCH clustering. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.linkage | 
 Linkages for hierarchical clustering. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization | 
 Initialization strategies for k-means. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality | 
 Quality measures for k-Means results. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.optics | 
 OPTICS family of clustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.itemsetmining.associationrules.interest | 
 Association rule interestingness measures. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.distance | 
 Distance-based outlier detection algorithms, such as DBOutlier and kNN. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.timeseries | 
 Algorithms for change point detection in time series. 
 | 
| de.lmu.ifi.dbs.elki.data.uncertain | 
 Uncertain data objects. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction | 
 Distance functions for use within ELKI. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic | 
 Distance from probability theory, mostly divergences such as K-L-divergence,
 J-divergence, F-divergence, χ²-divergence, etc. 
 | 
| de.lmu.ifi.dbs.elki.index.idistance | 
 iDistance is a distance based indexing technique, using a reference points embedding. 
 | 
| de.lmu.ifi.dbs.elki.index.lsh.hashfamilies | 
 Hash function families for LSH 
 | 
| de.lmu.ifi.dbs.elki.math | 
 Mathematical operations and utilities used throughout the framework 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing 
 | 
| de.lmu.ifi.dbs.elki.math.statistics | 
 Statistical tests and methods 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.dependence | 
 Statistical measures of dependence, such as correlation 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution | 
 Standard distributions, with random generation functionalities 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality | 
 Methods for estimating the intrinsic dimensionality. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.tests | 
 Statistical tests 
 | 
| de.lmu.ifi.dbs.elki.utilities.scaling.outlier | 
 Scaling of outlier scores, that require a statistical analysis of the
 occurring values 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KNNDistancesSampler<O>
Provides an order of the kNN-distances for all objects within the database. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DBSCAN<O>
Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to
 find density-connected sets in a database. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EM<V extends NumberVector,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
 Mixture Modeling (GMM), with optional MAP regularization. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AGNES<O>
Hierarchical Agglomerative Clustering (HAC) or Agglomerative Nesting (AGNES)
 is a classic hierarchical clustering algorithm. 
 | 
class  | 
MiniMax<O>
Minimax Linkage clustering. 
 | 
class  | 
MiniMaxNNChain<O>
MiniMax hierarchical clustering using the NNchain algorithm. 
 | 
class  | 
NNChain<O>
NNchain clustering algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BIRCHLeafClustering
BIRCH-based clustering algorithm that simply treats the leafs of the CFTree
 as clusters. 
 | 
class  | 
CFTree
Partial implementation of the CFTree as used by BIRCH. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CompleteLinkage
Complete-linkage ("maximum linkage") clustering method. 
 | 
class  | 
MinimumVarianceLinkage
Minimum increase in variance (MIVAR) linkage. 
 | 
class  | 
WardLinkage
Ward's method clustering method. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CLARA<V>
Clustering Large Applications (CLARA) is a clustering method for large data
 sets based on PAM, partitioning around medoids ( 
KMedoidsPAM) based on
 sampling. | 
class  | 
KMeansAnnulus<V extends NumberVector>
Annulus k-means algorithm. 
 | 
class  | 
KMeansLloyd<V extends NumberVector>
The standard k-means algorithm, using bulk iterations and commonly attributed
 to Lloyd and Forgy (independently). 
 | 
class  | 
KMedoidsPAM<V>
The original Partitioning Around Medoids (PAM) algorithm or k-medoids
 clustering, as proposed by Kaufman and Rousseeuw in "Clustering by means of
 Medoids". 
 | 
class  | 
KMedoidsPark<V>
A k-medoids clustering algorithm, implemented as EM-style bulk algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OstrovskyInitialMeans<O>
Ostrovsky initial means, a variant of k-means++ that is expected to give
 slightly better results on average, but only works for k-means and not for,
 e.g., PAM (k-medoids). 
 | 
class  | 
PAMInitialMeans<O>
PAM initialization for k-means (and of course, for PAM). 
 | 
class  | 
RandomlyChosenInitialMeans<O>
Initialize K-means by randomly choosing k existing elements as initial
 cluster centers. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AkaikeInformationCriterion
Akaike Information Criterion (AIC). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OPTICSXi
Extract clusters from OPTICS Plots using the original Xi extraction. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
GiniIndex
Gini-index based interestingness measure, using the weighted squared
 conditional probabilities compared to the non-conditional priors. 
 | 
class  | 
Jaccard
Jaccard interestingness measure:
 
 \[\tfrac{\text{support}(A \cup B)}{\text{support}(A \cap B)}
 =\tfrac{P(A \cap B)}{P(A)+P(B)-P(A \cap B)}
 =\tfrac{P(A \cap B)}{P(A \cup B)}\]
 
 Reference:
 
 P. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KNNSOS<O>
kNN-based adaption of Stochastic Outlier Selection. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OfflineChangePointDetectionAlgorithm
Off-line change point detection algorithm detecting a change in mean, based
 on the cumulative sum (CUSUM), same-variance assumption, and using bootstrap
 sampling for significance estimation. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
UnweightedDiscreteUncertainObject
Unweighted implementation of discrete uncertain objects. 
 | 
class  | 
WeightedDiscreteUncertainObject
Weighted version of discrete uncertain objects. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
 vector spaces (not only binary data). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ChiDistanceFunction
χ distance function, symmetric version. 
 | 
class  | 
FisherRaoDistanceFunction
Fisher-Rao riemannian metric for (discrete) probability distributions. 
 | 
class  | 
HellingerDistanceFunction
Hellinger metric / affinity / kernel, Bhattacharyya coefficient, fidelity
 similarity, Matusita distance, Hellinger-Kakutani metric on a probability
 distribution. 
 | 
class  | 
JeffreyDivergenceDistanceFunction
Jeffrey Divergence for  
NumberVectors is a symmetric, smoothened
 version of the KullbackLeiblerDivergenceAsymmetricDistanceFunction. | 
class  | 
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence for  
NumberVectors is a symmetric,
 smoothened version of the
 KullbackLeiblerDivergenceAsymmetricDistanceFunction. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InMemoryIDistanceIndex<O>
In-memory iDistance index, a metric indexing method using a reference point
 embedding. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CosineHashFunctionFamily
Hash function family to use with Cosine distance, using simplified hash
 functions where the projection is only drawn from +-1, instead of Gaussian
 distributions. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
class  | 
StatisticalMoments
Track various statistical moments, including mean, variance, skewness and
 kurtosis. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
RANSACCovarianceMatrixBuilder
RANSAC based approach to a more robust covariance matrix computation. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ProbabilityWeightedMoments
Estimate the L-Moments of a sample. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HiCSDependenceMeasure
Use the statistical tests as used by HiCS to measure dependence of variables. 
 | 
class  | 
SURFINGDependenceMeasure
Compute the similarity of dimensions using the SURFING score. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
GammaDistribution.nextRandom(double k,
          double theta,
          java.util.Random random)
Generate a random value with the generators parameters. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LMomentsEstimator
Probability weighted moments based estimator using L-Moments. 
 | 
class  | 
PWM2Estimator
Probability weighted moments based estimator, using the second moment. 
 | 
class  | 
PWMEstimator
Probability weighted moments based estimator. 
 | 
class  | 
ZipfEstimator
Zipf estimator (qq-estimator) of the intrinsic dimensionality. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
StandardizedTwoSampleAndersonDarlingTest
Perform a two-sample Anderson-Darling rank test, and standardize the
 statistic according to Scholz and Stephens. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
COPOutlierScaling
CDF based outlier score scaling. 
 | 
Copyright © 2019 ELKI Development Team. License information.