Package elki.clustering.kmeans
Class SingleAssignmentKMeans<V extends NumberVector>
- java.lang.Object
 - 
- elki.clustering.kmeans.AbstractKMeans<V,KMeansModel>
 - 
- elki.clustering.kmeans.SingleAssignmentKMeans<V>
 
 
 
- 
- Type Parameters:
 V- vector datatype
- All Implemented Interfaces:
 Algorithm,ClusteringAlgorithm<Clustering<KMeansModel>>,KMeans<V,KMeansModel>
public class SingleAssignmentKMeans<V extends NumberVector> extends AbstractKMeans<V,KMeansModel>
Pseudo-k-means variations, that assigns each object to the nearest center.- Since:
 - 0.7.0
 - Author:
 - Erich Schubert
 
 
- 
- 
Nested Class Summary
Nested Classes Modifier and Type Class Description protected static classSingleAssignmentKMeans.InstanceInner instance, storing state for a single data set.static classSingleAssignmentKMeans.Par<V extends NumberVector>Parameterization class.- 
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils 
 - 
 
- 
Field Summary
Fields Modifier and Type Field Description private static LoggingLOGThe logger for this class.- 
Fields inherited from class elki.clustering.kmeans.AbstractKMeans
distance, initializer, k, maxiter 
- 
Fields inherited from interface elki.clustering.kmeans.KMeans
DISTANCE_FUNCTION_ID, INIT_ID, K_ID, MAXITER_ID, SEED_ID, VARSTAT_ID 
 - 
 
- 
Constructor Summary
Constructors Constructor Description SingleAssignmentKMeans(NumberVectorDistance<? super V> distance, int k, KMeansInitialization initializer)Constructor. 
- 
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected LogginggetLogger()Get the (STATIC) logger for this class.Clustering<KMeansModel>run(Relation<V> relation)Run the clustering algorithm.- 
Methods inherited from class elki.clustering.kmeans.AbstractKMeans
getDistance, getInputTypeRestriction, incrementalUpdateMean, initialMeans, means, minusEquals, nearestMeans, plusEquals, plusMinusEquals, setDistance, setInitializer, setK 
- 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
- 
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun 
 - 
 
 - 
 
- 
- 
Field Detail
- 
LOG
private static final Logging LOG
The logger for this class. 
 - 
 
- 
Constructor Detail
- 
SingleAssignmentKMeans
public SingleAssignmentKMeans(NumberVectorDistance<? super V> distance, int k, KMeansInitialization initializer)
Constructor.- Parameters:
 distance- distance functionk- k parameterinitializer- Initialization method
 
 - 
 
- 
Method Detail
- 
run
public Clustering<KMeansModel> run(Relation<V> relation)
Description copied from interface:KMeansRun the clustering algorithm.- Parameters:
 relation- Relation to process.- Returns:
 - Clustering result
 
 
- 
getLogger
protected Logging getLogger()
Description copied from class:AbstractKMeansGet the (STATIC) logger for this class.- Specified by:
 getLoggerin classAbstractKMeans<V extends NumberVector,KMeansModel>- Returns:
 - the static logger
 
 
 - 
 
 -