Package elki.clustering
Interface ClusteringAlgorithm<C extends Clustering<? extends Model>>
-
- Type Parameters:
C- Clustering type
- All Superinterfaces:
Algorithm
- All Known Subinterfaces:
KMeans<V,M>,KMedoidsClustering<O>,SubspaceClusteringAlgorithm<M>
- All Known Implementing Classes:
AbstractBiclustering,AbstractCutDendrogram,AbstractKMeans,AbstractProjectedClustering,AffinityPropagation,AlternatingKMedoids,AnnulusKMeans,BestOfMultipleKMeans,BetulaGMM,BetulaGMMWeighted,BetulaLeafPreClustering,BetulaLloydKMeans,BIRCHLeafClustering,BIRCHLloydKMeans,BisectingKMeans,ByLabelClustering,ByLabelHierarchicalClustering,ByLabelOrAllInOneClustering,ByModelClustering,CanopyPreClustering,CASH,CenterOfMassMetaClustering,CFSFDP,CFSFDP,ChengAndChurch,CKMeans,CLARA,CLARANS,CLIQUE,ClustersWithNoiseExtraction,CompareMeans,COPAC,CutDendrogramByHeight,CutDendrogramByNumberOfClusters,DBSCAN,DiSH,DOC,EagerPAM,ElkanKMeans,EM,ERiC,EuclideanSphericalElkanKMeans,EuclideanSphericalHamerlyKMeans,EuclideanSphericalSimplifiedElkanKMeans,ExponionKMeans,ExternalClustering,FastCLARA,FastCLARANS,FastDOC,FasterCLARA,FasterMSC,FasterPAM,FastMSC,FastPAM,FastPAM1,FDBSCAN,FourC,FuzzyCMeans,GeneralizedDBSCAN,GMeans,GreedyKCenter,GriDBSCAN,HamerlyKMeans,HartiganWongKMeans,HDBSCANHierarchyExtraction,KDTreeEM,KDTreeFilteringKMeans,KDTreePruningKMeans,KMeansMinusMinus,KMediansLloyd,KNNKernelDensityMinimaClustering,Leader,LloydKMeans,LMCLUS,LSDBC,MacQueenKMeans,NaiveMeanShiftClustering,OPTICSXi,ORCLUS,P3C,PAM,PAMMEDSIL,PAMSIL,ParallelGeneralizedDBSCAN,ParallelLloydKMeans,PreDeCon,PROCLUS,RepresentativeUncertainClustering,ReynoldsPAM,SameSizeKMeans,ShallotKMeans,SimplifiedElkanKMeans,SimplifiedHierarchyExtraction,SingleAssignmentKMeans,SingleAssignmentKMedoids,SNNClustering,SortMeans,SphericalElkanKMeans,SphericalHamerlyKMeans,SphericalKMeans,SphericalSimplifiedElkanKMeans,SphericalSimplifiedHamerlyKMeans,SphericalSingleAssignmentKMeans,SUBCLU,SupportVectorClustering,TrivialAllInOne,TrivialAllNoise,UKMeans,XMeans,YinYangKMeans
public interface ClusteringAlgorithm<C extends Clustering<? extends Model>> extends Algorithm
Interface for Algorithms that are capable to provide aClusteringas Result. in general, clustering algorithms are supposed to implement theAlgorithm-Interface. The more specialized interfaceClusteringAlgorithmrequires an implementing algorithm to provide a special result class suitable as a partitioning of the database. More relaxed clustering algorithms are allowed to provide a result that is a fuzzy clustering, does not partition the database complete or is in any other sense a relaxed clustering result.- Since:
- 0.1
- Author:
- Arthur Zimek
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Method Summary
All Methods Instance Methods Default Methods Modifier and Type Method Description default Cautorun(Database database)Try to auto-run the algorithm on a database by calling a method calledrun, with an optionalDatabasefirst, and with data relations as specified byAlgorithm.getInputTypeRestriction().-
Methods inherited from interface elki.Algorithm
getInputTypeRestriction
-
-
-
-
Method Detail
-
autorun
default C autorun(Database database)
Description copied from interface:AlgorithmTry to auto-run the algorithm on a database by calling a method calledrun, with an optionalDatabasefirst, and with data relations as specified byAlgorithm.getInputTypeRestriction().
-
-