Package elki.clustering.kmeans.parallel
Class ParallelLloydKMeans<V extends NumberVector>
- java.lang.Object
-
- elki.clustering.kmeans.AbstractKMeans<V,KMeansModel>
-
- elki.clustering.kmeans.parallel.ParallelLloydKMeans<V>
-
- Type Parameters:
V- Vector type
- All Implemented Interfaces:
Algorithm,ClusteringAlgorithm<Clustering<KMeansModel>>,KMeans<V,KMeansModel>
public class ParallelLloydKMeans<V extends NumberVector> extends AbstractKMeans<V,KMeansModel>
Parallel implementation of k-Means clustering.- Since:
- 0.7.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class elki.clustering.kmeans.AbstractKMeans
AbstractKMeans.Instance
-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description private static LoggingLOGClass logger-
Fields inherited from class elki.clustering.kmeans.AbstractKMeans
distance, initializer, k, maxiter
-
Fields inherited from interface elki.clustering.kmeans.KMeans
DISTANCE_FUNCTION_ID, INIT_ID, K_ID, MAXITER_ID, SEED_ID, VARSTAT_ID
-
-
Constructor Summary
Constructors Constructor Description ParallelLloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description TypeInformation[]getInputTypeRestriction()Get the input type restriction used for negotiating the data query.protected LogginggetLogger()Get the (STATIC) logger for this class.Clustering<KMeansModel>run(Relation<V> relation)Run the clustering algorithm.-
Methods inherited from class elki.clustering.kmeans.AbstractKMeans
getDistance, incrementalUpdateMean, initialMeans, means, minusEquals, nearestMeans, plusEquals, plusMinusEquals, setDistance, setInitializer, setK
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun
-
-
-
-
Field Detail
-
LOG
private static final Logging LOG
Class logger
-
-
Constructor Detail
-
ParallelLloydKMeans
public ParallelLloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.- Parameters:
distance- Distance functionk- K parameter
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:AlgorithmGet the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestrictionin interfaceAlgorithm- Overrides:
getInputTypeRestrictionin classAbstractKMeans<V extends NumberVector,KMeansModel>- Returns:
- Type restriction
-
run
public Clustering<KMeansModel> run(Relation<V> relation)
Description copied from interface:KMeansRun the clustering algorithm.- Parameters:
relation- Relation to process.- Returns:
- Clustering result
-
getLogger
protected Logging getLogger()
Description copied from class:AbstractKMeansGet the (STATIC) logger for this class.- Specified by:
getLoggerin classAbstractKMeans<V extends NumberVector,KMeansModel>- Returns:
- the static logger
-
-