Uses of Interface
elki.database.ids.ArrayModifiableDBIDs
-
Packages that use ArrayModifiableDBIDs Package Description elki.clustering Clustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.hierarchical Hierarchical agglomerative clustering (HAC).elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.kmedoids.initialization elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.silhouette Silhouette clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.svm elki.database ELKI database layer - loading, storing, indexing and accessing data.elki.database.datastore.memory Memory data store implementation for ELKI.elki.database.ids Database object identification and ID group handling API.elki.database.ids.integer Integer-based DBID implementation -- do not use directly - always useDBIDUtil
.elki.index.laesa Linear Approximating and Eliminating Search Algorithm (LAESA).elki.index.preprocessed.fastoptics Preprocessed index used by the FastOPTICS algorithm.elki.index.tree.betula BETULA clustering by aggregating the data into cluster features.elki.index.tree.metrical.covertree Cover-tree variations.elki.index.tree.spatial.kd K-d-tree and variants.elki.index.tree.spatial.kd.split elki.itemsetmining Algorithms for frequent itemset mining such as APRIORI.elki.outlier.density Density-based outlier detection algorithms.elki.outlier.lof LOF family of outlier detection algorithms.elki.result Result types, representation and handling.elki.result.outlier Outlier result classes.elki.similarity.kernel Kernel functions.elki.svm.data elki.visualization.gui Package to provide a visualization GUI.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
-
Uses of ArrayModifiableDBIDs in elki.clustering
Methods in elki.clustering that return ArrayModifiableDBIDs Modifier and Type Method Description protected ArrayModifiableDBIDs
SNNClustering. findSNNNeighbors(SimilarityQuery<O> snnInstance, DBIDRef queryObject)
Returns the shared nearest neighbors of the specified query object in the given database.static ArrayModifiableDBIDs[]
ClusteringAlgorithmUtil. partitionsFromIntegerLabels(DBIDs ids, IntegerDataStore assignment, int k)
Collect clusters from their [0;k-1] integer labels. -
Uses of ArrayModifiableDBIDs in elki.clustering.correlation
Fields in elki.clustering.correlation declared as ArrayModifiableDBIDs Modifier and Type Field Description private ArrayModifiableDBIDs
HiCO.Instance. clusterOrder
Cluster order.private ArrayModifiableDBIDs
HiCO.Instance. tmpIds
Temporary ids. -
Uses of ArrayModifiableDBIDs in elki.clustering.dbscan
Methods in elki.clustering.dbscan with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected void
DBSCAN.Instance. expandCluster(DBIDRef startObjectID, ArrayModifiableDBIDs seeds)
DBSCAN-function expandCluster.protected int
GeneralizedDBSCAN.Instance. expandCluster(DBIDRef seed, int clusterid, WritableIntegerDataStore clusterids, T neighbors, ArrayModifiableDBIDs activeSet, FiniteProgress progress)
Set-based expand cluster implementation.protected int
GriDBSCAN.Instance. expandCluster(DBIDRef seed, int clusterid, WritableIntegerDataStore clusterids, ModifiableDoubleDBIDList neighbors, ArrayModifiableDBIDs activeSet, RangeSearcher<DBIDRef> rq, FiniteProgress pprog)
Set-based expand cluster implementation.protected int
GeneralizedDBSCAN.Instance. processCorePoint(DBIDRef seed, T newneighbors, int clusterid, WritableIntegerDataStore clusterids, ArrayModifiableDBIDs activeSet)
Process a single core point.protected int
GriDBSCAN.Instance. processCorePoint(DBIDRef seed, DoubleDBIDList newneighbors, int clusterid, WritableIntegerDataStore clusterids, ArrayModifiableDBIDs activeSet)
Process a single core point.private void
DBSCAN.Instance. processNeighbors(DoubleDBIDList neighbors, ModifiableDBIDs currentCluster, ArrayModifiableDBIDs seeds)
Process a single core point.private int
GriDBSCAN.Instance. runDBSCANOnCell(DBIDs cellids, Relation<V> relation, ModifiableDoubleDBIDList neighbors, ArrayModifiableDBIDs activeSet, int clusterid)
-
Uses of ArrayModifiableDBIDs in elki.clustering.em
Fields in elki.clustering.em declared as ArrayModifiableDBIDs Modifier and Type Field Description protected ArrayModifiableDBIDs
KDTreeEM. sorted
kd-tree object orderConstructors in elki.clustering.em with parameters of type ArrayModifiableDBIDs Constructor Description KDTree(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs sorted, int left, int right, double[] dimWidth, double mbw)
Constructor for a KDTree with statistics needed for KDTreeEM calculation. -
Uses of ArrayModifiableDBIDs in elki.clustering.hierarchical
Fields in elki.clustering.hierarchical declared as ArrayModifiableDBIDs Modifier and Type Field Description protected ArrayModifiableDBIDs
ClusterMergeHistoryBuilder. prototypes
Prototype storage, may benull
.Methods in elki.clustering.hierarchical with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected static <O> ClusterDistanceMatrix
MiniMax. initializeMatrices(ArrayDBIDs ids, ArrayModifiableDBIDs prots, DistanceQuery<O> dq)
Initializes the inter-cluster distance matrix of possible merges -
Uses of ArrayModifiableDBIDs in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as ArrayModifiableDBIDs Modifier and Type Field Description protected ArrayModifiableDBIDs
KDTreePruningKMeans.Instance. sorted
The tree stored as ArrayModifiableDBIDs -
Uses of ArrayModifiableDBIDs in elki.clustering.kmeans.initialization
Methods in elki.clustering.kmeans.initialization with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected void
KMeansPlusPlus.MedoidsInstance. chooseRemaining(int k, ArrayModifiableDBIDs means, double weightsum)
Choose remaining means, weighted by distance. -
Uses of ArrayModifiableDBIDs in elki.clustering.kmedoids
Fields in elki.clustering.kmedoids declared as ArrayModifiableDBIDs Modifier and Type Field Description (package private) ArrayModifiableDBIDs
CLARANS.Assignment. medoids
MedoidsMethods in elki.clustering.kmedoids that return ArrayModifiableDBIDs Modifier and Type Method Description protected ArrayModifiableDBIDs
PAM. initialMedoids(DistanceQuery<? super O> distQ, DBIDs ids, int k)
Choose the initial medoids.Methods in elki.clustering.kmedoids with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected double
SingleAssignmentKMedoids.Instance. assignToNearestCluster(ArrayModifiableDBIDs means)
Assign each object to the nearest cluster, return the cost.protected void
FastPAM.Instance. findBestSwaps(DBIDArrayIter m, ArrayModifiableDBIDs bestids, double[] best, double[] cost, double[] pcost)
Find the best swaps.protected double
EagerPAM.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the EagerPAM optimization phase.protected double
FasterPAM.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the PAM optimization phase.protected double
FastPAM.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the PAM optimization phase.protected double
FastPAM1.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the FastPAM optimization phase.protected double
PAM.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the PAM optimization phase.protected double
ReynoldsPAM.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the PAM optimization phase.protected double
SingleAssignmentKMedoids.Instance. run(ArrayModifiableDBIDs medoids)
Run the PAM optimization phase.protected void
FastPAM1.Instance. updateAssignment(ArrayModifiableDBIDs medoids, DBIDArrayIter miter, DBIDRef h, int m)
Update an existing cluster assignment.protected static Clustering<MedoidModel>
PAM. wrapResult(DBIDs ids, WritableIntegerDataStore assignment, ArrayModifiableDBIDs medoids, java.lang.String name)
Wrap the clustering result. -
Uses of ArrayModifiableDBIDs in elki.clustering.kmedoids.initialization
Methods in elki.clustering.kmedoids.initialization with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description private static void
LAB. shuffle(ArrayModifiableDBIDs ids, int ssize, int end, java.util.Random random)
Partial Fisher-Yates shuffle. -
Uses of ArrayModifiableDBIDs in elki.clustering.optics
Fields in elki.clustering.optics declared as ArrayModifiableDBIDs Modifier and Type Field Description protected ArrayModifiableDBIDs
GeneralizedOPTICS.Instance. candidates
Current list of candidates.(package private) ArrayModifiableDBIDs
OPTICSList.Instance. candidates
Current list of candidates.(package private) ArrayModifiableDBIDs
ClusterOrder. ids
Cluster order.Methods in elki.clustering.optics that return ArrayModifiableDBIDs Modifier and Type Method Description ArrayModifiableDBIDs
ClusterOrder. order(DBIDs ids)
Use the cluster order to sort the given collection ids.Methods in elki.clustering.optics with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description void
OPTICSList.Instance. findBest(ArrayModifiableDBIDs candidates, DBIDArrayMIter it, DBIDVar out)
Find the minimum in the candidates array.Constructors in elki.clustering.optics with parameters of type ArrayModifiableDBIDs Constructor Description ClusterOrder(ArrayModifiableDBIDs ids, WritableDoubleDataStore reachability, WritableDBIDDataStore predecessor)
ConstructorCorrelationClusterOrder(ArrayModifiableDBIDs ids, WritableDoubleDataStore reachability, WritableDBIDDataStore predecessor, WritableIntegerDataStore corrdim)
Constructor. -
Uses of ArrayModifiableDBIDs in elki.clustering.silhouette
Methods in elki.clustering.silhouette with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected double
FasterMSC.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the FasterMSC optimization phase.protected double
FasterMSC.Instance2. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the FasterMSC optimization phase.protected double
FastMSC.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the FastMSC optimization phase.protected double
FastMSC.Instance2. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the FastMSC optimization phase.protected double
PAMMEDSIL.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the PAMMEDSIL optimization phase.protected double
PAMSIL.Instance. run(ArrayModifiableDBIDs medoids, int maxiter)
Run the PAMSIL optimization phase. -
Uses of ArrayModifiableDBIDs in elki.clustering.subspace
Fields in elki.clustering.subspace declared as ArrayModifiableDBIDs Modifier and Type Field Description private ArrayModifiableDBIDs
DiSH.Instance. clusterOrder
Cluster order.private ArrayModifiableDBIDs
HiSC.Instance. clusterOrder
Cluster order.private ArrayModifiableDBIDs
DiSH.Instance. tmpIds
Temporary ids.Methods in elki.clustering.subspace that return types with arguments of type ArrayModifiableDBIDs Modifier and Type Method Description private it.unimi.dsi.fastutil.objects.Object2ObjectOpenCustomHashMap<long[],java.util.List<ArrayModifiableDBIDs>>
DiSH. extractClusters(Relation<? extends NumberVector> relation, DiSH.DiSHClusterOrder clusterOrder)
Extracts the clusters from the cluster order.private Pair<long[],ArrayModifiableDBIDs>
DiSH. findParent(Relation<? extends NumberVector> relation, Pair<long[],ArrayModifiableDBIDs> child, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified clusterMethods in elki.clustering.subspace with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected DBIDs
DOC. findNeighbors(DBIDRef q, long[] nD, ArrayModifiableDBIDs S, Relation<? extends NumberVector> relation)
Find the neighbors of point q in the given subspaceprotected Cluster<SubspaceModel>
DOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)
Performs a single run of DOC, finding a single cluster.protected Cluster<SubspaceModel>
FastDOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)
Performs a single run of FastDOC, finding a single cluster.Method parameters in elki.clustering.subspace with type arguments of type ArrayModifiableDBIDs Modifier and Type Method Description private void
DiSH. checkClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Removes the clusters with size < minpts from the cluster map and adds them to their parents.private Pair<long[],ArrayModifiableDBIDs>
DiSH. findParent(Relation<? extends NumberVector> relation, Pair<long[],ArrayModifiableDBIDs> child, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified clusterprivate Pair<long[],ArrayModifiableDBIDs>
DiSH. findParent(Relation<? extends NumberVector> relation, Pair<long[],ArrayModifiableDBIDs> child, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified clusterprivate void
DiSH. logClusterSizes(java.lang.String m, int dimensionality, it.unimi.dsi.fastutil.objects.Object2ObjectOpenCustomHashMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Log cluster sizes in verbose mode.private java.util.List<Cluster<SubspaceModel>>
DiSH. sortClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order.Constructors in elki.clustering.subspace with parameters of type ArrayModifiableDBIDs Constructor Description DiSHClusterOrder(ArrayModifiableDBIDs ids, WritableDoubleDataStore reachability, WritableDBIDDataStore predecessor, WritableIntegerDataStore corrdim, WritableDataStore<long[]> commonPreferenceVectors)
Constructor. -
Uses of ArrayModifiableDBIDs in elki.clustering.svm
Methods in elki.clustering.svm that return types with arguments of type ArrayModifiableDBIDs Modifier and Type Method Description private java.util.ArrayList<ArrayModifiableDBIDs>
SupportVectorClustering. collectClusters(StaticDBIDs sids, UnionFind uf)
-
Uses of ArrayModifiableDBIDs in elki.database
Methods in elki.database that return ArrayModifiableDBIDs Modifier and Type Method Description static ArrayModifiableDBIDs
DatabaseUtil. getObjectsByLabelMatch(Database database, java.util.regex.Pattern name_pattern)
Find object by matching their labels. -
Uses of ArrayModifiableDBIDs in elki.database.datastore.memory
Fields in elki.database.datastore.memory declared as ArrayModifiableDBIDs Modifier and Type Field Description private ArrayModifiableDBIDs
ArrayDBIDStore. data
Data array -
Uses of ArrayModifiableDBIDs in elki.database.ids
Methods in elki.database.ids that return ArrayModifiableDBIDs Modifier and Type Method Description ArrayModifiableDBIDs
ArrayModifiableDBIDs. clear()
ArrayModifiableDBIDs
DBIDFactory. newArray()
Make a new (modifiable) array of DBIDs.ArrayModifiableDBIDs
DBIDFactory. newArray(int size)
Make a new (modifiable) array of DBIDs.ArrayModifiableDBIDs
DBIDFactory. newArray(DBIDs existing)
Make a new (modifiable) array of DBIDs.static ArrayModifiableDBIDs
DBIDUtil. newArray()
Make a new (modifiable) array of DBIDs.static ArrayModifiableDBIDs
DBIDUtil. newArray(int size)
Make a new (modifiable) array of DBIDs.static ArrayModifiableDBIDs
DBIDUtil. newArray(DBIDs existing)
Make a new (modifiable) array of DBIDs.Methods in elki.database.ids with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description private static void
QuickSelectDBIDs. insertionSort(ArrayModifiableDBIDs data, java.util.Comparator<? super DBIDRef> comparator, int start, int end, DBIDArrayIter iter1, DBIDArrayIter iter2)
Sort a small array using repetitive insertion sort.static int
QuickSelectDBIDs. median(ArrayModifiableDBIDs data, java.util.Comparator<? super DBIDRef> comparator)
Compute the median of an array efficiently using the QuickSelect method.static int
QuickSelectDBIDs. median(ArrayModifiableDBIDs data, java.util.Comparator<? super DBIDRef> comparator, int begin, int end)
Compute the median of an array efficiently using the QuickSelect method.static int
QuickSelectDBIDs. quantile(ArrayModifiableDBIDs data, java.util.Comparator<? super DBIDRef> comparator, double quant)
Compute the median of an array efficiently using the QuickSelect method.static int
QuickSelectDBIDs. quantile(ArrayModifiableDBIDs data, java.util.Comparator<? super DBIDRef> comparator, int begin, int end, double quant)
Compute the median of an array efficiently using the QuickSelect method.static void
QuickSelectDBIDs. quickSelect(ArrayModifiableDBIDs data, java.util.Comparator<? super DBIDRef> comparator, int rank)
QuickSelect is essentially quicksort, except that we only "sort" that half of the array that we are interested in.static void
QuickSelectDBIDs. quickSelect(ArrayModifiableDBIDs data, java.util.Comparator<? super DBIDRef> comparator, int start, int end, int rank)
QuickSelect is essentially quicksort, except that we only "sort" that half of the array that we are interested in.static void
DBIDUtil. randomShuffle(ArrayModifiableDBIDs ids, RandomFactory rnd)
Produce a random shuffling of the given DBID array.static void
DBIDUtil. randomShuffle(ArrayModifiableDBIDs ids, java.util.Random random)
Produce a random shuffling of the given DBID array.static void
DBIDUtil. randomShuffle(ArrayModifiableDBIDs ids, java.util.Random random, int limit)
Produce a random shuffling of the given DBID array. -
Uses of ArrayModifiableDBIDs in elki.database.ids.integer
Classes in elki.database.ids.integer that implement ArrayModifiableDBIDs Modifier and Type Class Description (package private) class
ArrayModifiableIntegerDBIDs
Class using a primitive int[] array as storage.Methods in elki.database.ids.integer that return ArrayModifiableDBIDs Modifier and Type Method Description ArrayModifiableDBIDs
AbstractIntegerDBIDFactory. newArray()
ArrayModifiableDBIDs
AbstractIntegerDBIDFactory. newArray(int size)
ArrayModifiableDBIDs
AbstractIntegerDBIDFactory. newArray(DBIDs existing)
-
Uses of ArrayModifiableDBIDs in elki.index.laesa
Fields in elki.index.laesa declared as ArrayModifiableDBIDs Modifier and Type Field Description (package private) ArrayModifiableDBIDs
LAESA. refp
Reference points -
Uses of ArrayModifiableDBIDs in elki.index.preprocessed.fastoptics
Methods in elki.index.preprocessed.fastoptics with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description int
RandomProjectedNeighborsAndDensities. splitByDistance(ArrayModifiableDBIDs ind, int begin, int end, DoubleDataStore tpro, java.util.Random rand)
Split the data set by distances.int
RandomProjectedNeighborsAndDensities. splitRandomly(ArrayModifiableDBIDs ind, int begin, int end, DoubleDataStore tpro, java.util.Random rand)
Split the data set randomly.void
RandomProjectedNeighborsAndDensities. splitupNoSort(ArrayModifiableDBIDs ind, int begin, int end, int dim, java.util.Random rand)
Recursively splits entire point set until the set is below a threshold -
Uses of ArrayModifiableDBIDs in elki.index.tree.betula
Fields in elki.index.tree.betula with type parameters of type ArrayModifiableDBIDs Modifier and Type Field Description (package private) java.util.Map<ClusterFeature,ArrayModifiableDBIDs>
CFTree. idmap
Stored leaf entry to dbid relation -
Uses of ArrayModifiableDBIDs in elki.index.tree.metrical.covertree
Fields in elki.index.tree.metrical.covertree declared as ArrayModifiableDBIDs Modifier and Type Field Description (package private) ArrayModifiableDBIDs
SimplifiedCoverTree.Node. singletons
Objects in this node. -
Uses of ArrayModifiableDBIDs in elki.index.tree.spatial.kd
Fields in elki.index.tree.spatial.kd declared as ArrayModifiableDBIDs Modifier and Type Field Description protected ArrayModifiableDBIDs
MinimalisticMemoryKDTree. sorted
The actual "tree" as a sorted array.Methods in elki.index.tree.spatial.kd with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description java.lang.Object
MemoryKDTree. buildTree(Relation<? extends NumberVector> relation, int left, int right, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, VectorUtil.SortDBIDsBySingleDimension comp)
Build the k-d tree. -
Uses of ArrayModifiableDBIDs in elki.index.tree.spatial.kd.split
-
Uses of ArrayModifiableDBIDs in elki.itemsetmining
Methods in elki.itemsetmining with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected java.util.List<SparseItemset>
APRIORI. buildFrequentTwoItemsets(java.util.List<OneItemset> oneitems, Relation<BitVector> relation, int dim, int needed, DBIDs ids, ArrayModifiableDBIDs survivors)
Build the 2-itemsets.protected java.util.List<? extends Itemset>
APRIORI. frequentItemsets(java.util.List<? extends Itemset> candidates, Relation<BitVector> relation, int needed, DBIDs ids, ArrayModifiableDBIDs survivors, int length)
Returns the frequent BitSets out of the given BitSets with respect to the given database.protected java.util.List<SparseItemset>
APRIORI. frequentItemsetsSparse(java.util.List<SparseItemset> candidates, Relation<BitVector> relation, int needed, DBIDs ids, ArrayModifiableDBIDs survivors, int length)
Returns the frequent BitSets out of the given BitSets with respect to the given database. -
Uses of ArrayModifiableDBIDs in elki.outlier.density
Fields in elki.outlier.density declared as ArrayModifiableDBIDs Modifier and Type Field Description (package private) ArrayModifiableDBIDs
IsolationForest.ForestBuilder. ids
Array of current candidates(package private) ArrayModifiableDBIDs
HySortOD.Hypercube. instances
Holds a set of instances within the hypercube. -
Uses of ArrayModifiableDBIDs in elki.outlier.lof
Methods in elki.outlier.lof with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description private void
ALOCI.ALOCIQuadTree. bulkLoad(double[] lmin, double[] lmax, java.util.List<ALOCI.Node> children, ArrayModifiableDBIDs ids, int start, int end, int dim, int level, int code)
Bulk load the tree -
Uses of ArrayModifiableDBIDs in elki.result
Methods in elki.result that return ArrayModifiableDBIDs Modifier and Type Method Description ArrayModifiableDBIDs
OrderingResult. order(DBIDs ids)
Sort the given ids according to this ordering and return an iterator. -
Uses of ArrayModifiableDBIDs in elki.result.outlier
Methods in elki.result.outlier that return ArrayModifiableDBIDs Modifier and Type Method Description ArrayModifiableDBIDs
OrderingFromRelation. order(DBIDs ids)
-
Uses of ArrayModifiableDBIDs in elki.similarity.kernel
Fields in elki.similarity.kernel declared as ArrayModifiableDBIDs Modifier and Type Field Description (package private) ArrayModifiableDBIDs
KernelMatrix.SortedArrayMap. ids
-
Uses of ArrayModifiableDBIDs in elki.svm.data
Fields in elki.svm.data declared as ArrayModifiableDBIDs Modifier and Type Field Description (package private) ArrayModifiableDBIDs
SimilarityQueryAdapter. ids
Object ids to process. -
Uses of ArrayModifiableDBIDs in elki.visualization.gui
Fields in elki.visualization.gui declared as ArrayModifiableDBIDs Modifier and Type Field Description (package private) ArrayModifiableDBIDs
SelectionTableWindow. dbids
The DBIDs to display -
Uses of ArrayModifiableDBIDs in tutorial.clustering
Methods in tutorial.clustering that return ArrayModifiableDBIDs Modifier and Type Method Description protected ArrayModifiableDBIDs
SameSizeKMeans. initialAssignment(java.util.List<ModifiableDBIDs> clusters, WritableDataStore<SameSizeKMeans.Meta> metas, DBIDs ids)
Methods in tutorial.clustering with parameters of type ArrayModifiableDBIDs Modifier and Type Method Description protected double[][]
SameSizeKMeans. refineResult(Relation<V> relation, double[][] means, java.util.List<ModifiableDBIDs> clusters, WritableDataStore<SameSizeKMeans.Meta> metas, ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
-