Class AbsolutePearsonCorrelationDistance

  • All Implemented Interfaces:
    Distance<NumberVector>, NumberVectorDistance<NumberVector>, PrimitiveDistance<NumberVector>

    public class AbsolutePearsonCorrelationDistance
    extends AbstractNumberVectorDistance
    Absolute Pearson correlation distance function for feature vectors. The absolute Pearson correlation distance is computed from the Pearson correlation coefficient r as: 1-abs(r). The distance between two vectors will be low (near 0), if their attribute values are dimension-wise strictly positively or negatively correlated, it will be high (near 1), if their attribute values are dimension-wise uncorrelated.
    Since:
    0.7.0
    Author:
    Erich Schubert
    • Constructor Detail

      • AbsolutePearsonCorrelationDistance

        @Deprecated
        public AbsolutePearsonCorrelationDistance()
        Deprecated.
        Use static instance!
        Constructor - use STATIC instead.
    • Method Detail

      • distance

        public double distance​(NumberVector v1,
                               NumberVector v2)
        Computes the absolute Pearson correlation distance for two given feature vectors. The absolute Pearson correlation distance is computed from the Pearson correlation coefficient r as: 1-abs(r). Hence, possible values of this distance are between 0 and 1.
        Parameters:
        v1 - first feature vector
        v2 - second feature vector
        Returns:
        the absolute Pearson correlation distance for two given feature vectors v1 and v2
      • toString

        public java.lang.String toString()
        Overrides:
        toString in class java.lang.Object
      • equals

        public boolean equals​(java.lang.Object obj)
        Overrides:
        equals in class java.lang.Object
      • hashCode

        public int hashCode()
        Overrides:
        hashCode in class java.lang.Object