Package elki.distance
Interface PrimitiveDistance<O>
-
- Type Parameters:
O- input object type
- All Superinterfaces:
Distance<O>
- All Known Subinterfaces:
ClusteringDistanceSimilarity,Norm<O>,NumberVectorDistance<O>,SpatialPrimitiveDistance<V>,WeightedNumberVectorDistance<V>
- All Known Implementing Classes:
AbsolutePearsonCorrelationDistance,AbsoluteUncenteredCorrelationDistance,AbstractDimensionsSelectingDistance,AbstractEditDistance,AbstractNumberVectorDistance,AbstractSetDistance,ArcCosineDistance,ArcCosineUnitlengthDistance,BrayCurtisDistance,CanberraDistance,ChiDistance,ChiSquaredDistance,ClarkDistance,ClusteringAdjustedRandIndexSimilarity,ClusteringBCubedF1Similarity,ClusteringFowlkesMallowsSimilarity,ClusteringRandIndexSimilarity,ClusterIntersectionSimilarity,ClusterJaccardSimilarity,CosineDistance,CosineUnitlengthDistance,DerivativeDTWDistance,DimensionSelectingLatLngDistance,DTWDistance,EDRDistance,ERPDistance,EuclideanDistance,FisherRaoDistance,HammingDistance,HellingerDistance,HistogramIntersectionDistance,HistogramMatchDistance,HSBHistogramQuadraticDistance,JaccardSimilarityDistance,JeffreyDivergenceDistance,JensenShannonDivergenceDistance,KolmogorovSmirnovDistance,Kulczynski1Similarity,KullbackLeiblerDivergenceAsymmetricDistance,KullbackLeiblerDivergenceReverseAsymmetricDistance,LatLngDistance,LCSSDistance,LevenshteinDistance,LinearKernel,LngLatDistance,LPIntegerNormDistance,LPNormDistance,MahalanobisDistance,ManhattanDistance,MatrixWeightedQuadraticDistance,MaximumDistance,MinimumDistance,MultiLPNorm,NormalizedLevenshteinDistance,OnedimensionalDistance,PearsonCorrelationDistance,PolynomialKernel,RGBHistogramQuadraticDistance,SparseEuclideanDistance,SparseLPNormDistance,SparseManhattanDistance,SparseMaximumDistance,SparseSquaredEuclideanDistance,SqrtCosineDistance,SqrtCosineUnitlengthDistance,SqrtJensenShannonDivergenceDistance,SquaredEuclideanDistance,SquaredPearsonCorrelationDistance,SquaredUncenteredCorrelationDistance,SubspaceEuclideanDistance,SubspaceLPNormDistance,SubspaceManhattanDistance,SubspaceMaximumDistance,TriangularDiscriminationDistance,TriangularDistance,TutorialDistance,UncenteredCorrelationDistance,WeightedCanberraDistance,WeightedEuclideanDistance,WeightedLPNormDistance,WeightedManhattanDistance,WeightedMaximumDistance,WeightedPearsonCorrelationDistance,WeightedSquaredEuclideanDistance,WeightedSquaredPearsonCorrelationDistance
public interface PrimitiveDistance<O> extends Distance<O>
Primitive distance function that is defined on some kind of object.- Since:
- 0.4.0
- Author:
- Erich Schubert
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description doubledistance(O o1, O o2)Computes the distance between two given DatabaseObjects according to this distance function.SimpleTypeInformation<? super O>getInputTypeRestriction()Get the input data type of the function.default <T extends O>
DistanceQuery<T>instantiate(Relation<T> relation)Instantiate with a database to get the actual distance query.-
Methods inherited from interface elki.distance.Distance
isMetric, isSquared, isSymmetric
-
-
-
-
Method Detail
-
distance
double distance(O o1, O o2)
Computes the distance between two given DatabaseObjects according to this distance function.- Parameters:
o1- first DatabaseObjecto2- second DatabaseObject- Returns:
- the distance between two given DatabaseObjects according to this distance function
-
getInputTypeRestriction
SimpleTypeInformation<? super O> getInputTypeRestriction()
Description copied from interface:DistanceGet the input data type of the function.- Specified by:
getInputTypeRestrictionin interfaceDistance<O>- Returns:
- Type restriction
-
instantiate
default <T extends O> DistanceQuery<T> instantiate(Relation<T> relation)
Description copied from interface:DistanceInstantiate with a database to get the actual distance query.- Specified by:
instantiatein interfaceDistance<O>- Parameters:
relation- The representation to use- Returns:
- Actual distance query.
-
-