Package elki.distance.correlation
Class PearsonCorrelationDistance
- java.lang.Object
-
- elki.distance.AbstractNumberVectorDistance
-
- elki.distance.correlation.PearsonCorrelationDistance
-
- All Implemented Interfaces:
Distance<NumberVector>
,NumberVectorDistance<NumberVector>
,PrimitiveDistance<NumberVector>
public class PearsonCorrelationDistance extends AbstractNumberVectorDistance
Pearson correlation distance function for feature vectors. The Pearson correlation distance is computed from the Pearson correlation coefficientr
as:1-r
. Hence, possible values of this distance are between 0 and 2. The distance between two vectors will be low (near 0), if their attribute values are dimension-wise strictly positively correlated, it will be high (near 2), if their attribute values are dimension-wise strictly negatively correlated. For Features with uncorrelated attributes, the distance value will be intermediate (around 1).- Since:
- 0.3
- Author:
- Arthur Zimek
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
PearsonCorrelationDistance.Par
Parameterization class.
-
Field Summary
Fields Modifier and Type Field Description static PearsonCorrelationDistance
STATIC
Static instance.
-
Constructor Summary
Constructors Constructor Description PearsonCorrelationDistance()
Deprecated.Use static instance!
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
distance(NumberVector v1, NumberVector v2)
Computes the Pearson correlation distance for two given feature vectors.boolean
equals(java.lang.Object obj)
int
hashCode()
java.lang.String
toString()
-
Methods inherited from class elki.distance.AbstractNumberVectorDistance
dimensionality, dimensionality, dimensionality, dimensionality, dimensionality, dimensionality, dimensionality, dimensionality, getInputTypeRestriction
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface elki.distance.Distance
isMetric, isSquared, isSymmetric
-
Methods inherited from interface elki.distance.PrimitiveDistance
instantiate
-
-
-
-
Field Detail
-
STATIC
public static final PearsonCorrelationDistance STATIC
Static instance.
-
-
Constructor Detail
-
PearsonCorrelationDistance
@Deprecated public PearsonCorrelationDistance()
Deprecated.Use static instance!Constructor - useSTATIC
instead.
-
-
Method Detail
-
distance
public double distance(NumberVector v1, NumberVector v2)
Computes the Pearson correlation distance for two given feature vectors. The Pearson correlation distance is computed from the Pearson correlation coefficientr
as:1-r
. Hence, possible values of this distance are between 0 and 2.- Parameters:
v1
- first feature vectorv2
- second feature vector- Returns:
- the Pearson correlation distance for two given feature vectors v1 and v2
-
toString
public java.lang.String toString()
- Overrides:
toString
in classjava.lang.Object
-
equals
public boolean equals(java.lang.Object obj)
- Overrides:
equals
in classjava.lang.Object
-
hashCode
public int hashCode()
- Overrides:
hashCode
in classjava.lang.Object
-
-