Package elki.index.tree.betula.distance
Class BIRCHAverageIntraclusterDistance
- java.lang.Object
-
- elki.index.tree.betula.distance.BIRCHAverageIntraclusterDistance
-
- All Implemented Interfaces:
CFDistance
@Priority(-100) @Reference(authors="T. Zhang", title="Data Clustering for Very Large Datasets Plus Applications", booktitle="University of Wisconsin Madison, Technical Report #1355", url="ftp://ftp.cs.wisc.edu/pub/techreports/1997/TR1355.pdf", bibkey="tr/wisc/Zhang97") public class BIRCHAverageIntraclusterDistance extends java.lang.Object implements CFDistance
Average intracluster distance.Reference:
Data Clustering for Very Large Datasets Plus Applications
T. Zhang
Doctoral Dissertation, 1997.Note: this distance did not work well in the original work, apparently.
- Since:
- 0.8.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
BIRCHAverageIntraclusterDistance.Par
Parameterization class.
-
Field Summary
Fields Modifier and Type Field Description static BIRCHAverageIntraclusterDistance
STATIC
Static instance.
-
Constructor Summary
Constructors Constructor Description BIRCHAverageIntraclusterDistance()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
squaredDistance(NumberVector v, ClusterFeature ocf)
Distance of a vector to a clustering feature.double
squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)
Distance between two clustering features.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.index.tree.betula.distance.CFDistance
matSelfInit
-
-
-
-
Field Detail
-
STATIC
public static final BIRCHAverageIntraclusterDistance STATIC
Static instance.
-
-
Method Detail
-
squaredDistance
public double squaredDistance(NumberVector v, ClusterFeature ocf)
Description copied from interface:CFDistance
Distance of a vector to a clustering feature.- Specified by:
squaredDistance
in interfaceCFDistance
- Parameters:
v
- Vectorocf
- Clustering Feature- Returns:
- Distance
-
squaredDistance
public double squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)
Description copied from interface:CFDistance
Distance between two clustering features.- Specified by:
squaredDistance
in interfaceCFDistance
- Parameters:
ocf1
- First clustering featureocf2
- Second clustering feature- Returns:
- Distance
-
-