Package elki.index.tree.betula.distance
Interface CFDistance
-
- All Known Implementing Classes:
AverageInterclusterDistance
,AverageIntraclusterDistance
,BIRCHAverageInterclusterDistance
,BIRCHAverageIntraclusterDistance
,BIRCHRadiusDistance
,BIRCHVarianceIncreaseDistance
,CentroidEuclideanDistance
,CentroidManhattanDistance
,RadiusDistance
,VarianceIncreaseDistance
public interface CFDistance
Distance function for BIRCH clustering.For performance we (usually, except Manhattan) use squared distances.
- Since:
- 0.8.0
- Author:
- Erich Schubert
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description default double
matSelfInit(ClusterFeature cf)
Initialization for self measure for new Combinatorial clustering Methods (Podani 1989)double
squaredDistance(NumberVector v, ClusterFeature cf)
Distance of a vector to a clustering feature.double
squaredDistance(ClusterFeature c1, ClusterFeature c2)
Distance between two clustering features.
-
-
-
Method Detail
-
squaredDistance
double squaredDistance(NumberVector v, ClusterFeature cf)
Distance of a vector to a clustering feature.- Parameters:
v
- Vectorcf
- Clustering Feature- Returns:
- Distance
-
squaredDistance
double squaredDistance(ClusterFeature c1, ClusterFeature c2)
Distance between two clustering features.- Parameters:
c1
- First clustering featurec2
- Second clustering feature- Returns:
- Distance
-
matSelfInit
default double matSelfInit(ClusterFeature cf)
Initialization for self measure for new Combinatorial clustering Methods (Podani 1989)- Parameters:
cf
- Clustering Feature- Returns:
- internal measure
-
-