Package elki.index.tree.betula.distance
Class RadiusDistance
- java.lang.Object
-
- elki.index.tree.betula.distance.RadiusDistance
-
- All Implemented Interfaces:
CFDistance
@Alias("R") @Reference(authors="Andreas Lang and Erich Schubert",title="BETULA: Numerically Stable CF-Trees for BIRCH Clustering",booktitle="Int. Conf on Similarity Search and Applications",url="https://doi.org/10.1007/978-3-030-60936-8_22",bibkey="DBLP:conf/sisap/LangS20") @Reference(authors="Andreas Lang and Erich Schubert",title="BETULA: Fast Clustering of Large Data with Improved BIRCH CF-Trees",booktitle="Information Systems",url="https://doi.org/10.1016/j.is.2021.101918",bibkey="DBLP:journals/is/LangS22") public class RadiusDistance extends java.lang.Object implements CFDistance
Average Radius (R) criterion.References:
Andreas Lang and Erich Schubert
BETULA: Numerically Stable CF-Trees for BIRCH Clustering
Int. Conf on Similarity Search and Applications 2020Andreas Lang and Erich Schubert
BETULA: Fast Clustering of Large Data with Improved BIRCH CF-Trees
Information Systems- Since:
- 0.8.0
- Author:
- Andreas Lang, Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
RadiusDistance.Par
Parameterization class
-
Field Summary
Fields Modifier and Type Field Description static RadiusDistance
STATIC
Static instance.
-
Constructor Summary
Constructors Constructor Description RadiusDistance()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
matSelfInit(ClusterFeature cf)
Initialization for self measure for new Combinatorial clustering Methods (Podani 1989)double
squaredDistance(NumberVector nv, ClusterFeature cf1)
Distance of a vector to a clustering feature.double
squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
Distance between two clustering features.
-
-
-
Field Detail
-
STATIC
public static final RadiusDistance STATIC
Static instance.
-
-
Method Detail
-
squaredDistance
public double squaredDistance(NumberVector nv, ClusterFeature cf1)
Description copied from interface:CFDistance
Distance of a vector to a clustering feature.- Specified by:
squaredDistance
in interfaceCFDistance
- Parameters:
nv
- Vectorcf1
- Clustering Feature- Returns:
- Distance
-
squaredDistance
public double squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
Description copied from interface:CFDistance
Distance between two clustering features.- Specified by:
squaredDistance
in interfaceCFDistance
- Parameters:
cf1
- First clustering featurecf2
- Second clustering feature- Returns:
- Distance
-
matSelfInit
public double matSelfInit(ClusterFeature cf)
Description copied from interface:CFDistance
Initialization for self measure for new Combinatorial clustering Methods (Podani 1989)- Specified by:
matSelfInit
in interfaceCFDistance
- Parameters:
cf
- Clustering Feature- Returns:
- internal measure
-
-