Package elki.outlier.lof
Class LDF<O extends NumberVector>
- java.lang.Object
-
- elki.outlier.lof.LDF<O>
-
- Type Parameters:
O
- the type of objects handled by this algorithm
- All Implemented Interfaces:
Algorithm
,OutlierAlgorithm
@Title("LDF: Outlier Detection with Kernel Density Functions") @Reference(authors="L. J. Latecki, A. Lazarevic, D. Pokrajac", title="Outlier Detection with Kernel Density Functions", booktitle="Machine Learning and Data Mining in Pattern Recognition", url="https://doi.org/10.1007/978-3-540-73499-4_6", bibkey="DBLP:conf/mldm/LateckiLP07") public class LDF<O extends NumberVector> extends java.lang.Object implements OutlierAlgorithm
Outlier Detection with Kernel Density Functions.A variation of LOF which uses kernel density estimation, but in contrast to
SimpleKernelDensityLOF
also uses the reachability concept of LOF.Reference:
Outlier Detection with Kernel Density Functions
L. J. Latecki, A. Lazarevic, D. Pokrajac
Machine Learning and Data Mining in Pattern Recognition- Since:
- 0.5.5
- Author:
- Erich Schubert
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description protected double
c
Scaling constant, to limit value range to 1/cprotected Distance<? super O>
distance
Distance function used.protected double
h
Bandwidth scaling factor.protected KernelDensityFunction
kernel
Kernel density functionprotected int
kplus
Parameter k + 1 for the query point.private static Logging
LOG
The logger for this class.
-
Constructor Summary
Constructors Constructor Description LDF(int k, Distance<? super O> distance, KernelDensityFunction kernel, double h, double c)
Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description TypeInformation[]
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.OutlierResult
run(Relation<O> relation)
Run the naive kernel density LOF algorithm.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.outlier.OutlierAlgorithm
autorun
-
-
-
-
Field Detail
-
LOG
private static final Logging LOG
The logger for this class.
-
distance
protected Distance<? super O extends NumberVector> distance
Distance function used.
-
kplus
protected int kplus
Parameter k + 1 for the query point.
-
h
protected double h
Bandwidth scaling factor.
-
c
protected double c
Scaling constant, to limit value range to 1/c
-
kernel
protected KernelDensityFunction kernel
Kernel density function
-
-
Constructor Detail
-
LDF
public LDF(int k, Distance<? super O> distance, KernelDensityFunction kernel, double h, double c)
Constructor.- Parameters:
k
- the value of kkernel
- Kernel functionh
- Kernel bandwidth scalingc
- Score scaling parameter
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:Algorithm
Get the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestriction
in interfaceAlgorithm
- Returns:
- Type restriction
-
run
public OutlierResult run(Relation<O> relation)
Run the naive kernel density LOF algorithm.- Parameters:
relation
- Data to process- Returns:
- LOF outlier result
-
-