| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms
 
 Clustering algorithms are supposed to implement the
  
Algorithm-Interface. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation | 
 Affinity Propagation (AP) clustering. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | 
 Generalized DBSCAN
 
 Generalized DBSCAN is an abstraction of the original DBSCAN idea,
 that allows the use of arbitrary "neighborhood" and "core point" predicates. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased | 
 Angle-based outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods
 
 Methods that detect outliers in subspaces (projections) of the data set. 
 | 
| de.lmu.ifi.dbs.elki.database | 
 ELKI database layer - loading, storing, indexing and accessing data 
 | 
| de.lmu.ifi.dbs.elki.database.query.distance | 
 Prepared queries for distances 
 | 
| de.lmu.ifi.dbs.elki.database.query.range | 
 Prepared queries for ε-range queries, that return all objects within
 the radius ε 
 | 
| de.lmu.ifi.dbs.elki.database.query.similarity | 
 Prepared queries for similarity functions 
 | 
| de.lmu.ifi.dbs.elki.database.relation | 
 Relations, materialized and virtual (views) 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | 
 Distance functions deriving distances from, e.g., similarity measures 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic | 
 Distance from probability theory, mostly divergences such as K-L-divergence,
 J-divergence, F-divergence, χ²-divergence, etc. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.set | 
 Distance functions for binary and set type data. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction | 
 Similarity functions 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster | 
 Similarity measures for comparing clusters. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | 
 Kernel functions. 
 | 
| de.lmu.ifi.dbs.elki.index | 
 Index structure implementations 
 | 
| de.lmu.ifi.dbs.elki.index.distancematrix | 
 Precomputed distance matrix. 
 | 
| Class and Description | 
|---|
| SharedNearestNeighborSimilarityFunction
 SharedNearestNeighborSimilarityFunction with a pattern defined to accept
 Strings that define a non-negative Integer. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| NormalizedSimilarityFunction
 Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. 
 | 
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| NormalizedPrimitiveSimilarityFunction
 Marker interface for similarity functions working on primitive objects, and
 limited to the 0-1 value range. 
 | 
| NormalizedSimilarityFunction
 Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. 
 | 
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| NormalizedPrimitiveSimilarityFunction
 Marker interface for similarity functions working on primitive objects, and
 limited to the 0-1 value range. 
 | 
| NormalizedSimilarityFunction
 Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. 
 | 
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| AbstractIndexBasedSimilarityFunction
 Abstract super class for distance functions needing a preprocessor. 
 | 
| AbstractIndexBasedSimilarityFunction.Instance
 The actual instance bound to a particular database. 
 | 
| AbstractIndexBasedSimilarityFunction.Parameterizer
 Parameterization class. 
 | 
| AbstractVectorSimilarityFunction
 Abstract base class for double-valued primitive similarity functions. 
 | 
| DBIDSimilarityFunction
 Interface DBIDSimilarityFunction describes the requirements of any similarity
 function defined over object IDs. 
 | 
| FractionalSharedNearestNeighborSimilarityFunction
 SharedNearestNeighborSimilarityFunction with a pattern defined to accept
 Strings that define a non-negative Integer. 
 | 
| FractionalSharedNearestNeighborSimilarityFunction.Instance
 Actual instance for a dataset. 
 | 
| IndexBasedSimilarityFunction
 Interface for preprocessor/index based similarity functions. 
 | 
| IndexBasedSimilarityFunction.Instance
 Instance interface for index/preprocessor based distance functions. 
 | 
| Kulczynski1SimilarityFunction
 Kulczynski similarity 1. 
 | 
| Kulczynski2SimilarityFunction
 Kulczynski similarity 2. 
 | 
| NormalizedSimilarityFunction
 Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. 
 | 
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| SharedNearestNeighborSimilarityFunction
 SharedNearestNeighborSimilarityFunction with a pattern defined to accept
 Strings that define a non-negative Integer. 
 | 
| SharedNearestNeighborSimilarityFunction.Instance
 Instance for a particular database. 
 | 
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| NormalizedSimilarityFunction
 Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. 
 | 
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| AbstractVectorSimilarityFunction
 Abstract base class for double-valued primitive similarity functions. 
 | 
| PrimitiveSimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Class and Description | 
|---|
| SimilarityFunction
 Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
Copyright © 2019 ELKI Development Team. License information.