Uses of Interface
elki.database.ids.ModifiableDBIDs
-
Packages that use ModifiableDBIDs Package Description elki.algorithm.statistics Statistical analysis algorithms.elki.clustering Clustering algorithms.elki.clustering.affinitypropagation Affinity Propagation (AP) clustering.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.correlation.cash Helper classes for theCASH
algorithm.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.hierarchical Hierarchical agglomerative clustering (HAC).elki.clustering.hierarchical.extraction Extraction of partitional clusterings from hierarchical results.elki.clustering.kmeans K-means clustering and variations.elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.subspace.clique Helper classes for theCLIQUE
algorithm.elki.clustering.uncertain Clustering algorithms for uncertain data.elki.database.ids Database object identification and ID group handling API.elki.database.ids.integer Integer-based DBID implementation -- do not use directly - always useDBIDUtil
.elki.index.tree.metrical.mtreevariants.mktrees.mkapp elki.index.tree.metrical.mtreevariants.mktrees.mkcop elki.outlier Outlier detection algorithms.elki.outlier.lof LOF family of outlier detection algorithms.elki.visualization.visualizers.pairsegments Visualizers for inspecting cluster differences using pair counting segments.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
-
Uses of ModifiableDBIDs in elki.algorithm.statistics
Methods in elki.algorithm.statistics with parameters of type ModifiableDBIDs Modifier and Type Method Description private void
EvaluateRetrievalPerformance. findMatches(ModifiableDBIDs posn, Relation<?> lrelation, java.lang.Object label)
Find all matching objects. -
Uses of ModifiableDBIDs in elki.clustering
Fields in elki.clustering declared as ModifiableDBIDs Modifier and Type Field Description protected ModifiableDBIDs
SNNClustering. noise
Holds a set of noise.protected ModifiableDBIDs
SNNClustering. processedIDs
Holds a set of processed ids.Fields in elki.clustering with type parameters of type ModifiableDBIDs Modifier and Type Field Description protected java.util.List<ModifiableDBIDs>
SNNClustering. resultList
Holds a list of clusters found. -
Uses of ModifiableDBIDs in elki.clustering.affinitypropagation
Methods in elki.clustering.affinitypropagation that return types with arguments of type ModifiableDBIDs Modifier and Type Method Description private it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs>
AffinityPropagation. makeClusterMap(ArrayDBIDs ids, int[] assignment)
Build an int to DBIDs lookup for the clusters. -
Uses of ModifiableDBIDs in elki.clustering.correlation
Fields in elki.clustering.correlation declared as ModifiableDBIDs Modifier and Type Field Description (package private) ModifiableDBIDs
ORCLUS.ORCLUSCluster. objectIDs
The ids of the objects belonging to this cluster.private ModifiableDBIDs
CASH. processedIDs
Holds a set of processed ids.Methods in elki.clustering.correlation with parameters of type ModifiableDBIDs Modifier and Type Method Description private double[][]
CASH. runDerivator(Relation<ParameterizationFunction> relation, int dim, CASHInterval interval, ModifiableDBIDs outids)
Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model. -
Uses of ModifiableDBIDs in elki.clustering.correlation.cash
Fields in elki.clustering.correlation.cash declared as ModifiableDBIDs Modifier and Type Field Description private ModifiableDBIDs
CASHInterval. ids
Holds the ids of the objects associated with this interval.Methods in elki.clustering.correlation.cash that return ModifiableDBIDs Modifier and Type Method Description ModifiableDBIDs
CASHIntervalSplit. determineIDs(DBIDs superSetIDs, HyperBoundingBox interval, double d_min, double d_max)
Determines the ids belonging to the given interval, i.e. the parameterization functions falling within the interval.ModifiableDBIDs
CASHInterval. getIDs()
Returns the set of ids of the objects associated with this interval.Constructors in elki.clustering.correlation.cash with parameters of type ModifiableDBIDs Constructor Description CASHInterval(double[] min, double[] max, CASHIntervalSplit split, ModifiableDBIDs ids, int maxSplitDimension, int level, double d_min, double d_max)
Provides a unique interval represented by its id, a hyper bounding box and a set of objects ids associated with this interval. -
Uses of ModifiableDBIDs in elki.clustering.dbscan
Fields in elki.clustering.dbscan declared as ModifiableDBIDs Modifier and Type Field Description protected ModifiableDBIDs
DBSCAN.Instance. noise
Holds a set of noise.protected ModifiableDBIDs
DBSCAN.Instance. processedIDs
Holds a set of processed ids.Fields in elki.clustering.dbscan with type parameters of type ModifiableDBIDs Modifier and Type Field Description (package private) it.unimi.dsi.fastutil.longs.Long2ObjectOpenHashMap<ModifiableDBIDs>
GriDBSCAN.Instance. grid
Data grid partitioning.protected java.util.List<ModifiableDBIDs>
DBSCAN.Instance. resultList
Holds a list of clusters found.Methods in elki.clustering.dbscan with parameters of type ModifiableDBIDs Modifier and Type Method Description protected void
GriDBSCAN.Instance. mergeClusterInformation(ModifiableDBIDs cellids, WritableIntegerDataStore temporary, WritableDataStore<Assignment> clusterids)
Merge cluster information.private void
DBSCAN.Instance. processNeighbors(DoubleDBIDList neighbors, ModifiableDBIDs currentCluster, ArrayModifiableDBIDs seeds)
Process a single core point. -
Uses of ModifiableDBIDs in elki.clustering.hierarchical
Fields in elki.clustering.hierarchical with type parameters of type ModifiableDBIDs Modifier and Type Field Description protected it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs>
HACAM.Instance. clusters
Cluster to members mapprotected it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs>
MedoidLinkage.Instance. clusters
Cluster to members mapprotected it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs>
MiniMax.Instance. clusters
Map to cluster members -
Uses of ModifiableDBIDs in elki.clustering.hierarchical.extraction
Fields in elki.clustering.hierarchical.extraction declared as ModifiableDBIDs Modifier and Type Field Description protected ModifiableDBIDs
HDBSCANHierarchyExtraction.TempCluster. members
New ids, not yet in child clusters.protected ModifiableDBIDs
SimplifiedHierarchyExtraction.TempCluster. newids
New ids, not yet in child clusters.Fields in elki.clustering.hierarchical.extraction with type parameters of type ModifiableDBIDs Modifier and Type Field Description protected java.util.ArrayList<ModifiableDBIDs>
AbstractCutDendrogram.Instance. clusterMembers
Collected cluster members -
Uses of ModifiableDBIDs in elki.clustering.kmeans
Fields in elki.clustering.kmeans with type parameters of type ModifiableDBIDs Modifier and Type Field Description protected java.util.List<ModifiableDBIDs>
AbstractKMeans.Instance. clusters
Store the elements per cluster. -
Uses of ModifiableDBIDs in elki.clustering.optics
Fields in elki.clustering.optics declared as ModifiableDBIDs Modifier and Type Field Description (package private) ModifiableDBIDs
FastOPTICS. processed
processed pointsprotected ModifiableDBIDs
GeneralizedOPTICS.Instance. processedIDs
Holds a set of processed ids.private ModifiableDBIDs
OPTICSHeap.Instance. processedIDs
Holds a set of processed ids.(package private) ModifiableDBIDs
OPTICSList.Instance. processedIDs
Holds a set of processed ids. -
Uses of ModifiableDBIDs in elki.clustering.subspace
Fields in elki.clustering.subspace declared as ModifiableDBIDs Modifier and Type Field Description ModifiableDBIDs
P3C.ClusterCandidate. ids
Objects contained in cluster.(package private) ModifiableDBIDs
PROCLUS.PROCLUSCluster. objectIDs
The ids of the objects belonging to this cluster.Methods in elki.clustering.subspace that return types with arguments of type ModifiableDBIDs Modifier and Type Method Description private java.util.List<Pair<Subspace,ModifiableDBIDs>>
CLIQUE. determineClusters(java.util.List<CLIQUESubspace> denseSubspaces)
Determines the clusters in the specified dense subspaces.Methods in elki.clustering.subspace with parameters of type ModifiableDBIDs Modifier and Type Method Description private void
P3C. assignUnassigned(Relation<? extends NumberVector> relation, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis distance.private void
P3C. computeFuzzyMembership(Relation<? extends NumberVector> relation, java.util.ArrayList<P3C.Signature> clusterCores, ModifiableDBIDs unassigned, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, int dim)
Computes a fuzzy membership with the weights based on which cluster cores each data point is part of.private long[]
DiSH.Instance. determinePreferenceVector(ModifiableDBIDs[] neighborIDs, java.lang.StringBuilder msg)
Determines the preference vector according to the specified neighbor ids.private long[]
DiSH.Instance. determinePreferenceVectorByApriori(ModifiableDBIDs[] neighborIDs, java.lang.StringBuilder msg)
Determines the preference vector with the apriori strategy.private long[]
DiSH.Instance. determinePreferenceVectorByMaxIntersection(ModifiableDBIDs[] neighborIDs, java.lang.StringBuilder msg)
Determines the preference vector with the max intersection strategy.private void
P3C. findOutliers(Relation<? extends NumberVector> relation, java.util.List<MultivariateGaussianModel> models, java.util.ArrayList<P3C.ClusterCandidate> clusterCandidates, ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each point in a cluster against the critical value of the ChiSquared distribution with as many degrees of freedom as the cluster has relevant attributes.private int
DiSH.Instance. maxIntersection(java.util.Map<java.lang.Integer,ModifiableDBIDs> candidates, ModifiableDBIDs set)
Returns the index of the set having the maximum intersection set with the specified set contained in the specified map.Method parameters in elki.clustering.subspace with type arguments of type ModifiableDBIDs Modifier and Type Method Description private int
DiSH.Instance. max(java.util.Map<java.lang.Integer,ModifiableDBIDs> candidates)
Returns the set with the maximum size contained in the specified map.private int
DiSH.Instance. maxIntersection(java.util.Map<java.lang.Integer,ModifiableDBIDs> candidates, ModifiableDBIDs set)
Returns the index of the set having the maximum intersection set with the specified set contained in the specified map.Constructors in elki.clustering.subspace with parameters of type ModifiableDBIDs Constructor Description PROCLUSCluster(ModifiableDBIDs objectIDs, long[] dimensions, double[] centroid)
Constructor. -
Uses of ModifiableDBIDs in elki.clustering.subspace.clique
Fields in elki.clustering.subspace.clique declared as ModifiableDBIDs Modifier and Type Field Description private ModifiableDBIDs
CLIQUEUnit. ids
The ids of the feature vectors this unit contains.Methods in elki.clustering.subspace.clique that return types with arguments of type ModifiableDBIDs Modifier and Type Method Description java.util.List<Pair<Subspace,ModifiableDBIDs>>
CLIQUESubspace. determineClusters()
Determines all clusters in this subspace by performing a depth-first search algorithm to find connected dense units.Methods in elki.clustering.subspace.clique with parameters of type ModifiableDBIDs Modifier and Type Method Description void
CLIQUESubspace. dfs(CLIQUEUnit unit, ModifiableDBIDs cluster, CLIQUESubspace model)
Depth-first search algorithm to find connected dense units in this subspace that build a cluster.Constructors in elki.clustering.subspace.clique with parameters of type ModifiableDBIDs Constructor Description CLIQUEUnit(CLIQUEUnit prefix, int newdim, double min, double max, ModifiableDBIDs ids)
Creates a new k-dimensional unit for the given intervals. -
Uses of ModifiableDBIDs in elki.clustering.uncertain
Method parameters in elki.clustering.uncertain with type arguments of type ModifiableDBIDs Modifier and Type Method Description protected java.util.List<double[]>
UKMeans. means(java.util.List<? extends ModifiableDBIDs> clusters, java.util.List<double[]> means, Relation<DiscreteUncertainObject> database)
Returns the mean vectors of the given clusters in the given database.protected boolean
UKMeans. updateAssignment(DBIDIter iditer, java.util.List<? extends ModifiableDBIDs> clusters, WritableIntegerDataStore assignment, int newA)
Update the cluster assignment. -
Uses of ModifiableDBIDs in elki.database.ids
Subinterfaces of ModifiableDBIDs in elki.database.ids Modifier and Type Interface Description interface
ArrayModifiableDBIDs
Array-oriented implementation of a modifiable DBID collection.interface
HashSetModifiableDBIDs
Set-oriented implementation of a modifiable DBID collection.Methods in elki.database.ids with type parameters of type ModifiableDBIDs Modifier and Type Method Description default <T extends ModifiableDBIDs>
TDBIDIter. addTo(T collection)
Add all remaining elements of an iterator to an existing collection.Methods in elki.database.ids that return ModifiableDBIDs Modifier and Type Method Description ModifiableDBIDs
ModifiableDBIDs. clear()
Clear this collection.static ModifiableDBIDs
DBIDUtil. difference(DBIDs ids1, DBIDs ids2)
Returns the difference of the two specified collection of IDs.static ModifiableDBIDs
DBIDUtil. ensureModifiable(DBIDs ids)
Ensure modifiable.private static ModifiableDBIDs
DBIDUtil. internalIntersection(DBIDs first, DBIDs second)
Compute the set intersection of two sets.static ModifiableDBIDs
DBIDUtil. intersection(DBIDs first, DBIDs second)
Compute the set intersection of two sets.static ModifiableDBIDs
DBIDUtil. randomSample(DBIDs source, int k, int seed)
Produce a random sample of the given DBIDs.static ModifiableDBIDs
DBIDUtil. randomSample(DBIDs source, int k, RandomFactory rnd)
Produce a random sample of the given DBIDs.static ModifiableDBIDs
DBIDUtil. randomSample(DBIDs source, int k, java.lang.Long seed)
Produce a random sample of the given DBIDs.static ModifiableDBIDs
DBIDUtil. randomSample(DBIDs source, int k, java.util.Random random)
Produce a random sample of the given DBIDs.static ModifiableDBIDs
DBIDUtil. randomSampleExcept(DBIDs source, DBIDRef except, int k, RandomFactory rnd)
Produce a random sample of the given DBIDs.static ModifiableDBIDs
DBIDUtil. randomSampleExcept(DBIDs source, DBIDRef except, int k, java.util.Random random)
Produce a random sample of the given DBIDs.static ModifiableDBIDs
DBIDUtil. union(DBIDs ids1, DBIDs ids2)
Returns the union of the two specified collection of IDs. -
Uses of ModifiableDBIDs in elki.database.ids.integer
Classes in elki.database.ids.integer that implement ModifiableDBIDs Modifier and Type Class Description (package private) class
ArrayModifiableIntegerDBIDs
Class using a primitive int[] array as storage.(package private) class
FastutilIntOpenHashSetModifiableDBIDs
Implementation using Fastutil IntSet. -
Uses of ModifiableDBIDs in elki.index.tree.metrical.mtreevariants.mktrees.mkapp
Methods in elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type ModifiableDBIDs Modifier and Type Method Description private void
MkAppTree. leafEntryIDs(MkAppTreeNode<O> node, ModifiableDBIDs result)
Determines the ids of the leaf entries stored in the specified subtree. -
Uses of ModifiableDBIDs in elki.index.tree.metrical.mtreevariants.mktrees.mkcop
Methods in elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type ModifiableDBIDs Modifier and Type Method Description private void
MkCoPTree. doReverseKNNQuery(int k, DBIDRef q, ModifiableDoubleDBIDList result, ModifiableDBIDs candidates)
Performs a reverse knn query. -
Uses of ModifiableDBIDs in elki.outlier
Method parameters in elki.outlier with type arguments of type ModifiableDBIDs Modifier and Type Method Description private void
DWOF. clusterData(DBIDs ids, RangeSearcher<DBIDRef> rnnQuery, WritableDoubleDataStore radii, WritableDataStore<ModifiableDBIDs> labels)
This method applies a density based clustering algorithm.private int
DWOF. updateSizes(DBIDs ids, WritableDataStore<ModifiableDBIDs> labels, WritableIntegerDataStore newSizes)
This method updates each object's cluster size after the clustering step. -
Uses of ModifiableDBIDs in elki.outlier.lof
Methods in elki.outlier.lof with parameters of type ModifiableDBIDs Modifier and Type Method Description protected void
INFLO. computeINFLO(Relation<O> relation, ModifiableDBIDs pruned, KNNSearcher<DBIDRef> knnq, WritableDataStore<ModifiableDBIDs> rNNminuskNNs, WritableDoubleDataStore inflos, DoubleMinMax inflominmax)
Compute the final INFLO scores.private void
INFLO. computeNeighborhoods(Relation<O> relation, DataStore<SetDBIDs> knns, ModifiableDBIDs pruned, WritableDataStore<ModifiableDBIDs> rNNminuskNNs)
Compute the reverse kNN minus the kNN.Method parameters in elki.outlier.lof with type arguments of type ModifiableDBIDs Modifier and Type Method Description protected void
INFLO. computeINFLO(Relation<O> relation, ModifiableDBIDs pruned, KNNSearcher<DBIDRef> knnq, WritableDataStore<ModifiableDBIDs> rNNminuskNNs, WritableDoubleDataStore inflos, DoubleMinMax inflominmax)
Compute the final INFLO scores.private void
INFLO. computeNeighborhoods(Relation<O> relation, DataStore<SetDBIDs> knns, ModifiableDBIDs pruned, WritableDataStore<ModifiableDBIDs> rNNminuskNNs)
Compute the reverse kNN minus the kNN. -
Uses of ModifiableDBIDs in elki.visualization.visualizers.pairsegments
Fields in elki.visualization.visualizers.pairsegments declared as ModifiableDBIDs Modifier and Type Field Description protected ModifiableDBIDs
SegmentsStylingPolicy. unselectedObjects
Not selected IDs that will be drawn in default colors. -
Uses of ModifiableDBIDs in tutorial.clustering
Methods in tutorial.clustering with parameters of type ModifiableDBIDs Modifier and Type Method Description protected void
SameSizeKMeans. transfer(WritableDataStore<SameSizeKMeans.Meta> metas, SameSizeKMeans.Meta meta, ModifiableDBIDs src, ModifiableDBIDs dst, DBIDRef id, int dstnum)
Transfer a single element from one cluster to another.Method parameters in tutorial.clustering with type arguments of type ModifiableDBIDs Modifier and Type Method Description protected ArrayModifiableDBIDs
SameSizeKMeans. initialAssignment(java.util.List<ModifiableDBIDs> clusters, WritableDataStore<SameSizeKMeans.Meta> metas, DBIDs ids)
protected double[][]
SameSizeKMeans. refineResult(Relation<V> relation, double[][] means, java.util.List<ModifiableDBIDs> clusters, WritableDataStore<SameSizeKMeans.Meta> metas, ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
-