Uses of Interface
elki.data.model.Model
-
Packages that use Model Package Description elki.clustering Clustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.dbscan.parallel Parallel versions of Generalized DBSCAN.elki.clustering.em.models elki.clustering.hierarchical.extraction Extraction of partitional clusterings from hierarchical results.elki.clustering.kmeans K-means clustering and variations.elki.clustering.meta Meta clustering algorithms, that get their result from other clusterings or external sources.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.svm elki.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings.elki.data Basic classes for different data types, database object types and label types.elki.data.model Cluster models classes for various algorithms.elki.data.synthetic.bymodel Generator using a distribution model specified in an XML configuration file.elki.datasource.parser Parsers for different file formats and data types.elki.evaluation.clustering Evaluation of clustering results.elki.evaluation.outlier Evaluate an outlier score using a misclassification based cost model.elki.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers.elki.result Result types, representation and handling.elki.result.textwriter Text serialization (CSV, Gnuplot, Console, ...).elki.visualization Visualization package of ELKI.elki.visualization.opticsplot Code for drawing OPTICS plots.elki.visualization.visualizers.scatterplot.cluster Visualizers for clustering results based on 2D projections.elki.visualization.visualizers.visunproj Visualizers that do not use a particular projection.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
-
Uses of Model in elki.clustering
Classes in elki.clustering with type parameters of type Model Modifier and Type Interface Description interfaceClusteringAlgorithm<C extends Clustering<? extends Model>>Interface for Algorithms that are capable to provide aClusteringas Result. in general, clustering algorithms are supposed to implement theAlgorithm-Interface.Methods in elki.clustering that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>SNNClustering. run(Relation<O> relation)Perform SNN clustering -
Uses of Model in elki.clustering.correlation
Methods in elki.clustering.correlation that return types with arguments of type Model Modifier and Type Method Description private Clustering<Model>CASH. doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.Clustering<Model>CASH. run(Relation<? extends NumberVector> rel)Run CASH on the relation.Clustering<Model>LMCLUS. run(Relation<? extends NumberVector> relation)The main LMCLUS (Linear manifold clustering algorithm) is processed in this method.Clustering<Model>ORCLUS. run(Relation<? extends NumberVector> relation)Performs the ORCLUS algorithm on the given database.Method parameters in elki.clustering.correlation with type arguments of type Model Modifier and Type Method Description private java.util.List<java.util.List<Cluster<CorrelationModel>>>ERiC. extractCorrelationClusters(Clustering<Model> dbscanResult, Relation<? extends NumberVector> relation, int dimensionality, ERiCNeighborPredicate.Instance npred)Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. -
Uses of Model in elki.clustering.dbscan
Methods in elki.clustering.dbscan that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>GeneralizedDBSCAN. autorun(Database database)protected Clustering<Model>GriDBSCAN.Instance. buildResult(DBIDs ids, int clusterid)Assemble the clustering result.Clustering<Model>DBSCAN. run(Relation<O> relation)Performs the DBSCAN algorithm on the given database.Clustering<Model>GeneralizedDBSCAN.Instance. run()Run the actual GDBSCAN algorithm.Clustering<Model>GriDBSCAN.Instance. run(Relation<V> relation)Performs the DBSCAN algorithm on the given database.Clustering<Model>GriDBSCAN. run(Relation<V> relation)Performs the DBSCAN algorithm on the given database.Clustering<Model>LSDBC. run(Relation<O> relation)Run the LSDBC algorithm -
Uses of Model in elki.clustering.dbscan.parallel
Methods in elki.clustering.dbscan.parallel that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>ParallelGeneralizedDBSCAN. autorun(Database database)Clustering<Model>ParallelGeneralizedDBSCAN.Instance. run()Run the parallel GDBSCAN algorithm. -
Uses of Model in elki.clustering.em.models
Classes in elki.clustering.em.models with type parameters of type Model Modifier and Type Interface Description interfaceEMClusterModel<O,M extends Model>Models usable in EM clustering.interfaceEMClusterModelFactory<O,M extends Model>Factory for initializing the EM models. -
Uses of Model in elki.clustering.hierarchical.extraction
Methods in elki.clustering.hierarchical.extraction that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>ClustersWithNoiseExtraction. autorun(Database database)Clustering<Model>ClustersWithNoiseExtraction.Instance. run()Extract all clusters from the pi-lambda-representation.Clustering<Model>ClustersWithNoiseExtraction. run(ClusterMergeHistory merges)Process an existing result. -
Uses of Model in elki.clustering.kmeans
Classes in elki.clustering.kmeans with type parameters of type Model Modifier and Type Class Description classAbstractKMeans<V extends NumberVector,M extends Model>Abstract base class for k-means implementations.interfaceKMeans<V extends NumberVector,M extends Model>Some constants and options shared among kmeans family algorithms. -
Uses of Model in elki.clustering.meta
Methods in elki.clustering.meta that return types with arguments of type Model Modifier and Type Method Description Clustering<? extends Model>ExternalClustering. autorun(Database database)Run the algorithm. -
Uses of Model in elki.clustering.subspace
Methods in elki.clustering.subspace that return types with arguments of type Model Modifier and Type Method Description private java.util.List<Cluster<Model>>SUBCLU. runDBSCAN(Relation<V> relation, DBIDs ids, Subspace subspace)Runs the DBSCAN algorithm on the specified partition of the database in the given subspace.Method parameters in elki.clustering.subspace with type arguments of type Model Modifier and Type Method Description private SubspaceSUBCLU. bestSubspace(java.util.List<Subspace> subspaces, Subspace candidate, java.util.TreeMap<Subspace,java.util.List<Cluster<Model>>> clusterMap)Determines thed-dimensional subspace of the(d+1)-dimensional candidate with minimal number of objects in the cluster. -
Uses of Model in elki.clustering.svm
Methods in elki.clustering.svm that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>SupportVectorClustering. run(Relation<NumberVector> relation)perform clustering -
Uses of Model in elki.clustering.trivial
Classes in elki.clustering.trivial with type parameters of type Model Modifier and Type Class Description classReferenceClustering<M extends Model>Reference clustering.Methods in elki.clustering.trivial that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>ByLabelClustering. autorun(Database database)Clustering<Model>ByLabelHierarchicalClustering. autorun(Database database)Clustering<Model>ByLabelOrAllInOneClustering. autorun(Database database)Clustering<Model>ByLabelClustering. run(Relation<?> relation)Run the actual clustering algorithm.Clustering<Model>ByLabelHierarchicalClustering. run(Relation<?> relation)Run the actual clustering algorithm.Clustering<Model>ByModelClustering. run(Relation<Model> relation)Run the actual clustering algorithm.Clustering<Model>TrivialAllInOne. run(Relation<?> relation)Perform trivial clustering.Clustering<Model>TrivialAllNoise. run(Relation<?> relation)Run the trivial clustering algorithm.Method parameters in elki.clustering.trivial with type arguments of type Model Modifier and Type Method Description Clustering<Model>ByModelClustering. run(Relation<Model> relation)Run the actual clustering algorithm. -
Uses of Model in elki.data
Classes in elki.data with type parameters of type Model Modifier and Type Class Description classCluster<M extends Model>Generic cluster class, that may or not have hierarchical information.classClustering<M extends Model>Result class for clusterings.Fields in elki.data declared as Model Modifier and Type Field Description private MCluster. modelCluster model.Methods in elki.data that return types with arguments of type Model Modifier and Type Method Description static java.util.List<Clustering<? extends Model>>Clustering. getClusteringResults(java.lang.Object r)Collect all clustering results from a Result -
Uses of Model in elki.data.model
Subinterfaces of Model in elki.data.model Modifier and Type Interface Description interfacePrototypeModel<V>Cluster model that stores a prototype for each cluster.Classes in elki.data.model that implement Model Modifier and Type Class Description classBiclusterModelWrapper class to provide the basic properties of a Bicluster.classBiclusterWithInversionsModelThis code was factored out of the Bicluster class, since not all biclusters have inverted rows.classClusterModelGeneric cluster model.classCoreObjectsModelCluster model using "core" objects.classCorrelationAnalysisSolutionA solution of correlation analysis is a matrix of equations describing the dependencies.classCorrelationModelCluster model using a filtered PCA result and an centroid.classDendrogramModelModel for dendrograms, provides the height of this subtree.classDimensionModelCluster model additionally providing a cluster dimensionality.classEMModelCluster model of an EM cluster, providing a mean and a full covariance Matrix.classGeneratorModelCluster model for synthetically generated data.classKMeansModelTrivial subclass of theMeanModelthat indicates the clustering to be produced by k-means (so the Voronoi cell visualization is sensible).classLinearEquationModelCluster model containing a linear equation system for the cluster.classMeanModelCluster model that stores a mean for the cluster.classMedoidModelCluster model that stores a mean for the cluster.classOPTICSModelModel for an OPTICS clusterclassPrototypeDendrogramModelHierarchical cluster, with prototype.classSimplePrototypeModel<V>Cluster model that stores a prototype for each cluster.classSubspaceModelModel for Subspace Clusters.Fields in elki.data.model with type parameters of type Model Modifier and Type Field Description static SimpleTypeInformation<Model>Model. TYPEType information, for relation selection.Methods in elki.data.model with parameters of type Model Modifier and Type Method Description static NumberVectorModelUtil. getPrototype(Model model, Relation<? extends NumberVector> relation)Get the representative vector for a cluster model.static <V extends NumberVector>
VModelUtil. getPrototype(Model model, Relation<? extends V> relation, NumberVector.Factory<V> factory)Get (and convert!)static NumberVectorModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends NumberVector> relation, DBIDs ids)Get the representative vector for a cluster model, or compute the centroid.static <V extends NumberVector>
VModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends V> relation, DBIDs ids, NumberVector.Factory<V> factory)Get the representative vector for a cluster model, or compute the centroid. -
Uses of Model in elki.data.synthetic.bymodel
Methods in elki.data.synthetic.bymodel that return Model Modifier and Type Method Description ModelGeneratorInterface. makeModel()Make a cluster model for this cluster.ModelGeneratorSingleCluster. makeModel()ModelGeneratorStatic. makeModel()Methods in elki.data.synthetic.bymodel with parameters of type Model Modifier and Type Method Description private voidGeneratorMain. initLabelsAndModels(java.util.ArrayList<GeneratorInterface> generators, ClassLabel[] labels, Model[] models, java.util.regex.Pattern reassign)Initialize cluster labels and models. -
Uses of Model in elki.datasource.parser
Fields in elki.datasource.parser with type parameters of type Model Modifier and Type Field Description (package private) Clustering<Model>ClusteringVectorParser. curcluCurrent clustering. -
Uses of Model in elki.evaluation.clustering
Methods in elki.evaluation.clustering with type parameters of type Model Modifier and Type Method Description static <C extends Model>
voidLogClusterSizes. logClusterSizes(Clustering<C> c)Log the cluster sizes of a clustering. -
Uses of Model in elki.evaluation.outlier
Methods in elki.evaluation.outlier that return types with arguments of type Model Modifier and Type Method Description private Clustering<Model>OutlierThresholdClustering. split(OutlierResult or) -
Uses of Model in elki.outlier.trivial
Method parameters in elki.outlier.trivial with type arguments of type Model Modifier and Type Method Description OutlierResultTrivialGeneratedOutlier. run(Relation<Model> models, Relation<NumberVector> vecs, Relation<?> labels)Run the algorithm -
Uses of Model in elki.result
Method parameters in elki.result with type arguments of type Model Modifier and Type Method Description private DoubleObjPair<Polygon>KMLOutputHandler. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords)Recursively step through the clusters to build the hulls.private DoubleObjPair<Polygon>KMLOutputHandler. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords)Recursively step through the clusters to build the hulls.private voidKMLOutputHandler. writeClusteringResult(javax.xml.stream.XMLStreamWriter xmlw, Clustering<Model> clustering, Database database) -
Uses of Model in elki.result.textwriter
Method parameters in elki.result.textwriter with type arguments of type Model Modifier and Type Method Description private voidTextWriter. writeClusterResult(Database db, StreamFactory streamOpener, Clustering<Model> clustering, Cluster<Model> clus, java.util.List<Relation<?>> ra, NamingScheme naming)private voidTextWriter. writeClusterResult(Database db, StreamFactory streamOpener, Clustering<Model> clustering, Cluster<Model> clus, java.util.List<Relation<?>> ra, NamingScheme naming) -
Uses of Model in elki.visualization
Methods in elki.visualization that return types with arguments of type Model Modifier and Type Method Description private Clustering<Model>VisualizerContext. generateDefaultClustering()Generate a default (fallback) clustering. -
Uses of Model in elki.visualization.opticsplot
Methods in elki.visualization.opticsplot that return types with arguments of type Model Modifier and Type Method Description static <E extends ClusterOrder>
Clustering<Model>OPTICSCut. makeOPTICSCut(E co, double epsilon)Compute an OPTICS cut clustering -
Uses of Model in elki.visualization.visualizers.scatterplot.cluster
Method parameters in elki.visualization.visualizers.scatterplot.cluster with type arguments of type Model Modifier and Type Method Description private doubleClusterAlphaHullVisualization.Instance. addRecursively(java.util.ArrayList<double[]> hull, Hierarchy<Cluster<Model>> hier, Cluster<Model> clus)Recursively add a cluster and its children for alpha shapes.private doubleClusterAlphaHullVisualization.Instance. addRecursively(java.util.ArrayList<double[]> hull, Hierarchy<Cluster<Model>> hier, Cluster<Model> clus)Recursively add a cluster and its children for alpha shapes.private DoubleObjPair<Polygon>ClusterConvexHullVisualization.Instance. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls)Recursively step through the clusters to build the hulls.private DoubleObjPair<Polygon>ClusterConvexHullVisualization.Instance. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls)Recursively step through the clusters to build the hulls. -
Uses of Model in elki.visualization.visualizers.visunproj
Methods in elki.visualization.visualizers.visunproj with type parameters of type Model Modifier and Type Method Description protected static <M extends Model>
int[]KeyVisualization. findDepth(Clustering<M> c)Compute the size of the clustering.private static <M extends Model>
voidKeyVisualization. findDepth(Hierarchy<Cluster<M>> hier, Cluster<M> cluster, int[] size)Recursive depth computation.Method parameters in elki.visualization.visualizers.visunproj with type arguments of type Model Modifier and Type Method Description private doubleKeyVisualization.Instance. drawHierarchy(SVGPlot svgp, MarkerLibrary ml, DoubleDoublePair size, DoubleDoublePair pos, int depth, Cluster<Model> cluster, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<Cluster<Model>> cnum, Hierarchy<Cluster<Model>> hier)private doubleKeyVisualization.Instance. drawHierarchy(SVGPlot svgp, MarkerLibrary ml, DoubleDoublePair size, DoubleDoublePair pos, int depth, Cluster<Model> cluster, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<Cluster<Model>> cnum, Hierarchy<Cluster<Model>> hier)private doubleKeyVisualization.Instance. drawHierarchy(SVGPlot svgp, MarkerLibrary ml, DoubleDoublePair size, DoubleDoublePair pos, int depth, Cluster<Model> cluster, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<Cluster<Model>> cnum, Hierarchy<Cluster<Model>> hier) -
Uses of Model in tutorial.clustering
Methods in tutorial.clustering that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>NaiveAgglomerativeHierarchicalClustering1. run(Relation<O> relation)Perform HACClustering<Model>NaiveAgglomerativeHierarchicalClustering2. run(Relation<O> relation)Perform HACClustering<Model>NaiveAgglomerativeHierarchicalClustering3. run(Relation<O> relation)Perform HAC
-