Uses of Interface
elki.data.model.Model
-
Packages that use Model Package Description elki.clustering Clustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.dbscan.parallel Parallel versions of Generalized DBSCAN.elki.clustering.em.models elki.clustering.hierarchical.extraction Extraction of partitional clusterings from hierarchical results.elki.clustering.kmeans K-means clustering and variations.elki.clustering.meta Meta clustering algorithms, that get their result from other clusterings or external sources.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.svm elki.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings.elki.data Basic classes for different data types, database object types and label types.elki.data.model Cluster models classes for various algorithms.elki.data.synthetic.bymodel Generator using a distribution model specified in an XML configuration file.elki.datasource.parser Parsers for different file formats and data types.elki.evaluation.clustering Evaluation of clustering results.elki.evaluation.outlier Evaluate an outlier score using a misclassification based cost model.elki.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers.elki.result Result types, representation and handling.elki.result.textwriter Text serialization (CSV, Gnuplot, Console, ...).elki.visualization Visualization package of ELKI.elki.visualization.opticsplot Code for drawing OPTICS plots.elki.visualization.visualizers.scatterplot.cluster Visualizers for clustering results based on 2D projections.elki.visualization.visualizers.visunproj Visualizers that do not use a particular projection.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
-
Uses of Model in elki.clustering
Classes in elki.clustering with type parameters of type Model Modifier and Type Interface Description interface
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide aClustering
as Result. in general, clustering algorithms are supposed to implement theAlgorithm
-Interface.Methods in elki.clustering that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>
SNNClustering. run(Relation<O> relation)
Perform SNN clustering -
Uses of Model in elki.clustering.correlation
Methods in elki.clustering.correlation that return types with arguments of type Model Modifier and Type Method Description private Clustering<Model>
CASH. doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.Clustering<Model>
CASH. run(Relation<? extends NumberVector> rel)
Run CASH on the relation.Clustering<Model>
LMCLUS. run(Relation<? extends NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this method.Clustering<Model>
ORCLUS. run(Relation<? extends NumberVector> relation)
Performs the ORCLUS algorithm on the given database.Method parameters in elki.clustering.correlation with type arguments of type Model Modifier and Type Method Description private java.util.List<java.util.List<Cluster<CorrelationModel>>>
ERiC. extractCorrelationClusters(Clustering<Model> dbscanResult, Relation<? extends NumberVector> relation, int dimensionality, ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. -
Uses of Model in elki.clustering.dbscan
Methods in elki.clustering.dbscan that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>
GeneralizedDBSCAN. autorun(Database database)
protected Clustering<Model>
GriDBSCAN.Instance. buildResult(DBIDs ids, int clusterid)
Assemble the clustering result.Clustering<Model>
DBSCAN. run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
GeneralizedDBSCAN.Instance. run()
Run the actual GDBSCAN algorithm.Clustering<Model>
GriDBSCAN.Instance. run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
GriDBSCAN. run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
LSDBC. run(Relation<O> relation)
Run the LSDBC algorithm -
Uses of Model in elki.clustering.dbscan.parallel
Methods in elki.clustering.dbscan.parallel that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>
ParallelGeneralizedDBSCAN. autorun(Database database)
Clustering<Model>
ParallelGeneralizedDBSCAN.Instance. run()
Run the parallel GDBSCAN algorithm. -
Uses of Model in elki.clustering.em.models
Classes in elki.clustering.em.models with type parameters of type Model Modifier and Type Interface Description interface
EMClusterModel<O,M extends Model>
Models usable in EM clustering.interface
EMClusterModelFactory<O,M extends Model>
Factory for initializing the EM models. -
Uses of Model in elki.clustering.hierarchical.extraction
Methods in elki.clustering.hierarchical.extraction that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>
ClustersWithNoiseExtraction. autorun(Database database)
Clustering<Model>
ClustersWithNoiseExtraction.Instance. run()
Extract all clusters from the pi-lambda-representation.Clustering<Model>
ClustersWithNoiseExtraction. run(ClusterMergeHistory merges)
Process an existing result. -
Uses of Model in elki.clustering.kmeans
Classes in elki.clustering.kmeans with type parameters of type Model Modifier and Type Class Description class
AbstractKMeans<V extends NumberVector,M extends Model>
Abstract base class for k-means implementations.interface
KMeans<V extends NumberVector,M extends Model>
Some constants and options shared among kmeans family algorithms. -
Uses of Model in elki.clustering.meta
Methods in elki.clustering.meta that return types with arguments of type Model Modifier and Type Method Description Clustering<? extends Model>
ExternalClustering. autorun(Database database)
Run the algorithm. -
Uses of Model in elki.clustering.subspace
Methods in elki.clustering.subspace that return types with arguments of type Model Modifier and Type Method Description private java.util.List<Cluster<Model>>
SUBCLU. runDBSCAN(Relation<V> relation, DBIDs ids, Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the given subspace.Method parameters in elki.clustering.subspace with type arguments of type Model Modifier and Type Method Description private Subspace
SUBCLU. bestSubspace(java.util.List<Subspace> subspaces, Subspace candidate, java.util.TreeMap<Subspace,java.util.List<Cluster<Model>>> clusterMap)
Determines thed
-dimensional subspace of the(d+1)
-dimensional candidate with minimal number of objects in the cluster. -
Uses of Model in elki.clustering.svm
Methods in elki.clustering.svm that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>
SupportVectorClustering. run(Relation<NumberVector> relation)
perform clustering -
Uses of Model in elki.clustering.trivial
Classes in elki.clustering.trivial with type parameters of type Model Modifier and Type Class Description class
ReferenceClustering<M extends Model>
Reference clustering.Methods in elki.clustering.trivial that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>
ByLabelClustering. autorun(Database database)
Clustering<Model>
ByLabelHierarchicalClustering. autorun(Database database)
Clustering<Model>
ByLabelOrAllInOneClustering. autorun(Database database)
Clustering<Model>
ByLabelClustering. run(Relation<?> relation)
Run the actual clustering algorithm.Clustering<Model>
ByLabelHierarchicalClustering. run(Relation<?> relation)
Run the actual clustering algorithm.Clustering<Model>
ByModelClustering. run(Relation<Model> relation)
Run the actual clustering algorithm.Clustering<Model>
TrivialAllInOne. run(Relation<?> relation)
Perform trivial clustering.Clustering<Model>
TrivialAllNoise. run(Relation<?> relation)
Run the trivial clustering algorithm.Method parameters in elki.clustering.trivial with type arguments of type Model Modifier and Type Method Description Clustering<Model>
ByModelClustering. run(Relation<Model> relation)
Run the actual clustering algorithm. -
Uses of Model in elki.data
Classes in elki.data with type parameters of type Model Modifier and Type Class Description class
Cluster<M extends Model>
Generic cluster class, that may or not have hierarchical information.class
Clustering<M extends Model>
Result class for clusterings.Fields in elki.data declared as Model Modifier and Type Field Description private M
Cluster. model
Cluster model.Methods in elki.data that return types with arguments of type Model Modifier and Type Method Description static java.util.List<Clustering<? extends Model>>
Clustering. getClusteringResults(java.lang.Object r)
Collect all clustering results from a Result -
Uses of Model in elki.data.model
Subinterfaces of Model in elki.data.model Modifier and Type Interface Description interface
PrototypeModel<V>
Cluster model that stores a prototype for each cluster.Classes in elki.data.model that implement Model Modifier and Type Class Description class
BiclusterModel
Wrapper class to provide the basic properties of a Bicluster.class
BiclusterWithInversionsModel
This code was factored out of the Bicluster class, since not all biclusters have inverted rows.class
ClusterModel
Generic cluster model.class
CoreObjectsModel
Cluster model using "core" objects.class
CorrelationAnalysisSolution
A solution of correlation analysis is a matrix of equations describing the dependencies.class
CorrelationModel
Cluster model using a filtered PCA result and an centroid.class
DendrogramModel
Model for dendrograms, provides the height of this subtree.class
DimensionModel
Cluster model additionally providing a cluster dimensionality.class
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance Matrix.class
GeneratorModel
Cluster model for synthetically generated data.class
KMeansModel
Trivial subclass of theMeanModel
that indicates the clustering to be produced by k-means (so the Voronoi cell visualization is sensible).class
LinearEquationModel
Cluster model containing a linear equation system for the cluster.class
MeanModel
Cluster model that stores a mean for the cluster.class
MedoidModel
Cluster model that stores a mean for the cluster.class
OPTICSModel
Model for an OPTICS clusterclass
PrototypeDendrogramModel
Hierarchical cluster, with prototype.class
SimplePrototypeModel<V>
Cluster model that stores a prototype for each cluster.class
SubspaceModel
Model for Subspace Clusters.Fields in elki.data.model with type parameters of type Model Modifier and Type Field Description static SimpleTypeInformation<Model>
Model. TYPE
Type information, for relation selection.Methods in elki.data.model with parameters of type Model Modifier and Type Method Description static NumberVector
ModelUtil. getPrototype(Model model, Relation<? extends NumberVector> relation)
Get the representative vector for a cluster model.static <V extends NumberVector>
VModelUtil. getPrototype(Model model, Relation<? extends V> relation, NumberVector.Factory<V> factory)
Get (and convert!)static NumberVector
ModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends NumberVector> relation, DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid.static <V extends NumberVector>
VModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends V> relation, DBIDs ids, NumberVector.Factory<V> factory)
Get the representative vector for a cluster model, or compute the centroid. -
Uses of Model in elki.data.synthetic.bymodel
Methods in elki.data.synthetic.bymodel that return Model Modifier and Type Method Description Model
GeneratorInterface. makeModel()
Make a cluster model for this cluster.Model
GeneratorSingleCluster. makeModel()
Model
GeneratorStatic. makeModel()
Methods in elki.data.synthetic.bymodel with parameters of type Model Modifier and Type Method Description private void
GeneratorMain. initLabelsAndModels(java.util.ArrayList<GeneratorInterface> generators, ClassLabel[] labels, Model[] models, java.util.regex.Pattern reassign)
Initialize cluster labels and models. -
Uses of Model in elki.datasource.parser
Fields in elki.datasource.parser with type parameters of type Model Modifier and Type Field Description (package private) Clustering<Model>
ClusteringVectorParser. curclu
Current clustering. -
Uses of Model in elki.evaluation.clustering
Methods in elki.evaluation.clustering with type parameters of type Model Modifier and Type Method Description static <C extends Model>
voidLogClusterSizes. logClusterSizes(Clustering<C> c)
Log the cluster sizes of a clustering. -
Uses of Model in elki.evaluation.outlier
Methods in elki.evaluation.outlier that return types with arguments of type Model Modifier and Type Method Description private Clustering<Model>
OutlierThresholdClustering. split(OutlierResult or)
-
Uses of Model in elki.outlier.trivial
Method parameters in elki.outlier.trivial with type arguments of type Model Modifier and Type Method Description OutlierResult
TrivialGeneratedOutlier. run(Relation<Model> models, Relation<NumberVector> vecs, Relation<?> labels)
Run the algorithm -
Uses of Model in elki.result
Method parameters in elki.result with type arguments of type Model Modifier and Type Method Description private DoubleObjPair<Polygon>
KMLOutputHandler. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.private DoubleObjPair<Polygon>
KMLOutputHandler. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.private void
KMLOutputHandler. writeClusteringResult(javax.xml.stream.XMLStreamWriter xmlw, Clustering<Model> clustering, Database database)
-
Uses of Model in elki.result.textwriter
Method parameters in elki.result.textwriter with type arguments of type Model Modifier and Type Method Description private void
TextWriter. writeClusterResult(Database db, StreamFactory streamOpener, Clustering<Model> clustering, Cluster<Model> clus, java.util.List<Relation<?>> ra, NamingScheme naming)
private void
TextWriter. writeClusterResult(Database db, StreamFactory streamOpener, Clustering<Model> clustering, Cluster<Model> clus, java.util.List<Relation<?>> ra, NamingScheme naming)
-
Uses of Model in elki.visualization
Methods in elki.visualization that return types with arguments of type Model Modifier and Type Method Description private Clustering<Model>
VisualizerContext. generateDefaultClustering()
Generate a default (fallback) clustering. -
Uses of Model in elki.visualization.opticsplot
Methods in elki.visualization.opticsplot that return types with arguments of type Model Modifier and Type Method Description static <E extends ClusterOrder>
Clustering<Model>OPTICSCut. makeOPTICSCut(E co, double epsilon)
Compute an OPTICS cut clustering -
Uses of Model in elki.visualization.visualizers.scatterplot.cluster
Method parameters in elki.visualization.visualizers.scatterplot.cluster with type arguments of type Model Modifier and Type Method Description private double
ClusterAlphaHullVisualization.Instance. addRecursively(java.util.ArrayList<double[]> hull, Hierarchy<Cluster<Model>> hier, Cluster<Model> clus)
Recursively add a cluster and its children for alpha shapes.private double
ClusterAlphaHullVisualization.Instance. addRecursively(java.util.ArrayList<double[]> hull, Hierarchy<Cluster<Model>> hier, Cluster<Model> clus)
Recursively add a cluster and its children for alpha shapes.private DoubleObjPair<Polygon>
ClusterConvexHullVisualization.Instance. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.private DoubleObjPair<Polygon>
ClusterConvexHullVisualization.Instance. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls. -
Uses of Model in elki.visualization.visualizers.visunproj
Methods in elki.visualization.visualizers.visunproj with type parameters of type Model Modifier and Type Method Description protected static <M extends Model>
int[]KeyVisualization. findDepth(Clustering<M> c)
Compute the size of the clustering.private static <M extends Model>
voidKeyVisualization. findDepth(Hierarchy<Cluster<M>> hier, Cluster<M> cluster, int[] size)
Recursive depth computation.Method parameters in elki.visualization.visualizers.visunproj with type arguments of type Model Modifier and Type Method Description private double
KeyVisualization.Instance. drawHierarchy(SVGPlot svgp, MarkerLibrary ml, DoubleDoublePair size, DoubleDoublePair pos, int depth, Cluster<Model> cluster, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<Cluster<Model>> cnum, Hierarchy<Cluster<Model>> hier)
private double
KeyVisualization.Instance. drawHierarchy(SVGPlot svgp, MarkerLibrary ml, DoubleDoublePair size, DoubleDoublePair pos, int depth, Cluster<Model> cluster, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<Cluster<Model>> cnum, Hierarchy<Cluster<Model>> hier)
private double
KeyVisualization.Instance. drawHierarchy(SVGPlot svgp, MarkerLibrary ml, DoubleDoublePair size, DoubleDoublePair pos, int depth, Cluster<Model> cluster, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<Cluster<Model>> cnum, Hierarchy<Cluster<Model>> hier)
-
Uses of Model in tutorial.clustering
Methods in tutorial.clustering that return types with arguments of type Model Modifier and Type Method Description Clustering<Model>
NaiveAgglomerativeHierarchicalClustering1. run(Relation<O> relation)
Perform HACClustering<Model>
NaiveAgglomerativeHierarchicalClustering2. run(Relation<O> relation)
Perform HACClustering<Model>
NaiveAgglomerativeHierarchicalClustering3. run(Relation<O> relation)
Perform HAC
-