Uses of Class
elki.utilities.documentation.Reference
-
Packages that use Reference Package Description elki.algorithm Miscellaneous algorithms.elki.algorithm.statistics Statistical analysis algorithms.elki.application Base classes for standalone applications.elki.application.experiments Packaged experiments to make them easy to reproduce.elki.application.greedyensemble Greedy ensembles for outlier detection.elki.clustering Clustering algorithms.elki.clustering.affinitypropagation Affinity Propagation (AP) clustering.elki.clustering.biclustering Biclustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.dbscan.parallel Parallel versions of Generalized DBSCAN.elki.clustering.dbscan.predicates Neighbor and core predicated for Generalized DBSCAN.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.em.models elki.clustering.hierarchical Hierarchical agglomerative clustering (HAC).elki.clustering.hierarchical.birch BIRCH clustering.elki.clustering.hierarchical.extraction Extraction of partitional clusterings from hierarchical results.elki.clustering.hierarchical.linkage Linkages for hierarchical clustering.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.initialization.betula Initialization methods for BIRCH-based k-means and EM clustering.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.kmedoids.initialization elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.silhouette Silhouette clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.uncertain Clustering algorithms for uncertain data.elki.data.projection.random Random projection families.elki.database.ids.integer Integer-based DBID implementation -- do not use directly - always useDBIDUtil.elki.datasource.filter.transform Data space transformations.elki.distance Distance functions for use within ELKI.elki.distance.colorhistogram Distance functions for color histograms.elki.distance.geo Geographic (earth) distance functions.elki.distance.histogram Distance functions for one-dimensional histograms.elki.distance.probabilistic Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence, F-divergence, χ²-divergence, etc.elki.distance.set Distance functions for binary and set type data.elki.distance.strings Distance functions for strings.elki.distance.timeseries Distance functions designed for time series.elki.evaluation.clustering Evaluation of clustering results.elki.evaluation.clustering.internal Internal evaluation measures for clusterings.elki.evaluation.clustering.pairsegments Pair-segment analysis of multiple clusterings.elki.evaluation.outlier Evaluate an outlier score using a misclassification based cost model.elki.evaluation.scores Evaluation of rankings and scorings.elki.index.laesa Linear Approximating and Eliminating Search Algorithm (LAESA).elki.index.lsh.hashfamilies Hash function families for LSH.elki.index.lsh.hashfunctions Hash functions for LSH.elki.index.preprocessed.fastoptics Preprocessed index used by the FastOPTICS algorithm.elki.index.preprocessed.knn Indexes providing KNN and rKNN data.elki.index.projected Projected indexes for data.elki.index.tree.betula.distance Distance functions for BETULA and BIRCH.elki.index.tree.metrical.covertree Cover-tree variations.elki.index.tree.metrical.mtreevariants.mtree elki.index.tree.metrical.mtreevariants.strategies.insert Insertion (choose path) strategies of nodes in an M-tree (and variants).elki.index.tree.metrical.mtreevariants.strategies.split Splitting strategies of nodes in an M-tree (and variants).elki.index.tree.metrical.mtreevariants.strategies.split.distribution Entry distribution strategies of nodes in an M-tree (and variants).elki.index.tree.metrical.vptree elki.index.tree.spatial.kd K-d-tree and variants.elki.index.tree.spatial.kd.split elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries.elki.index.tree.spatial.rstarvariants.rstar elki.index.tree.spatial.rstarvariants.strategies.bulk Packages for bulk-loading R*-trees.elki.index.tree.spatial.rstarvariants.strategies.insert Insertion strategies for R-trees.elki.index.tree.spatial.rstarvariants.strategies.overflow Overflow treatment strategies for R-trees.elki.index.tree.spatial.rstarvariants.strategies.reinsert Reinsertion strategies for R-trees.elki.index.tree.spatial.rstarvariants.strategies.split Splitting strategies for R-trees.elki.index.vafile Vector Approximation File.elki.itemsetmining Algorithms for frequent itemset mining such as APRIORI.elki.itemsetmining.associationrules Association rule mining.elki.itemsetmining.associationrules.interest Association rule interestingness measures.elki.math Mathematical operations and utilities used throughout the framework.elki.math.geodesy Functions for computing on the sphere / earth.elki.math.geometry Algorithms from computational geometry.elki.math.linearalgebra The linear algebra package provides classes and computational methods for operations on matrices and vectors.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and eigenvector processing.elki.math.spacefillingcurves Space filling curves.elki.math.statistics.dependence Statistical measures of dependence, such as correlation.elki.math.statistics.dependence.mcde Tests tailored to be used withMCDEDependence.elki.math.statistics.distribution Standard distributions, with random generation functionalities.elki.math.statistics.distribution.estimator Estimators for statistical distributions.elki.math.statistics.distribution.estimator.meta Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g., on a trimmed data set, or as an ensemble.elki.math.statistics.intrinsicdimensionality Methods for estimating the intrinsic dimensionality.elki.math.statistics.kernelfunctions Kernel functions from statistics.elki.math.statistics.tests Statistical tests.elki.outlier Outlier detection algorithms.elki.outlier.anglebased Angle-based outlier detection algorithms.elki.outlier.clustering Clustering based outlier detection.elki.outlier.density Density-based outlier detection algorithms.elki.outlier.distance Distance-based outlier detection algorithms, such as DBOutlier and kNN.elki.outlier.distance.parallel Parallel implementations of distance-based outlier detectors.elki.outlier.intrinsic Outlier detection algorithms based on intrinsic dimensionality.elki.outlier.lof LOF family of outlier detection algorithms.elki.outlier.lof.parallel Parallelized variants of LOF.elki.outlier.meta Meta outlier detection algorithms: external scores, score rescaling.elki.outlier.spatial Spatial outlier detection algorithms.elki.outlier.subspace Subspace outlier detection methods.elki.outlier.svm Support-Vector-Machines for outlier detection.elki.projection Data projections (see also preprocessing filters for basic projections).elki.result Result types, representation and handling.elki.similarity Similarity functions.elki.similarity.cluster Similarity measures for comparing clusters.elki.timeseries Algorithms for change point detection in time series.elki.utilities.datastructures Basic memory structures such as heaps and object hierarchies.elki.utilities.datastructures.arrays Utilities for arrays: advanced sorting for primitive arrays.elki.utilities.datastructures.unionfind Union-find data structures.elki.utilities.documentation Documentation utilities: Annotations for Title, Description, Reference.elki.utilities.random Random number generation.elki.utilities.scaling.outlier Scaling of outlier scores, that require a statistical analysis of the occurring values.elki.visualization.parallel3d 3DPC: 3D parallel coordinate plot visualization for ELKI.elki.visualization.parallel3d.layout Layouting algorithms for 3D parallel coordinate plots.elki.visualization.projector Projectors are responsible for finding appropriate projections for data relations.elki.visualization.visualizers.pairsegments Visualizers for inspecting cluster differences using pair counting segments.elki.visualization.visualizers.scatterplot.density Visualizers for data set density in a scatterplot projection.elki.visualization.visualizers.scatterplot.outlier Visualizers for outlier scores based on 2D projections.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation.tutorial.outlier Tutorials on implementing outlier detection methods in ELKI. -
Packages with annotations of type Reference Package Description elki.outlier.lof.parallel Parallelized variants of LOF. -
-
Uses of Reference in elki.algorithm
Classes in elki.algorithm with annotations of type Reference Modifier and Type Class Description classDependencyDerivator<V extends NumberVector>Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA. -
Uses of Reference in elki.algorithm.statistics
Classes in elki.algorithm.statistics with annotations of type Reference Modifier and Type Class Description classHopkinsStatisticClusteringTendencyThe Hopkins Statistic of Clustering Tendency measures the probability that a data set is generated by a uniform data distribution. -
Uses of Reference in elki.application
Fields in elki.application with annotations of type Reference Modifier and Type Field Description static java.lang.StringAbstractApplication. REFERENCEInformation for citation and version. -
Uses of Reference in elki.application.experiments
Classes in elki.application.experiments with annotations of type Reference Modifier and Type Class Description classVisualizeGeodesicDistancesVisualization function for Cross-track, Along-track, and minimum distance function. -
Uses of Reference in elki.application.greedyensemble
Classes in elki.application.greedyensemble with annotations of type Reference Modifier and Type Class Description classComputeKNNOutlierScores<O extends NumberVector>Application that runs a series of kNN-based algorithms on a data set, for building an ensemble in a second step.classGreedyEnsembleExperimentClass to load an outlier detection summary file, as produced byComputeKNNOutlierScores, and compute a naive ensemble for it.classVisualizePairwiseGainMatrixClass to load an outlier detection summary file, as produced byComputeKNNOutlierScores, and compute a matrix with the pairwise gains. -
Uses of Reference in elki.clustering
Classes in elki.clustering with annotations of type Reference Modifier and Type Class Description classBetulaLeafPreClusteringBETULA-based clustering algorithm that simply treats the leafs of the CFTree as clusters.classCanopyPreClustering<O>Canopy pre-clustering is a simple preprocessing step for clustering.classCFSFDP<O>Clustering by fast search and find of density peaks (CFSFDP) is a density-based clustering method similar to mean-shift clustering.classLeader<O>Leader clustering algorithm.classNaiveMeanShiftClustering<V extends NumberVector>Mean-shift based clustering algorithm.classSNNClustering<O>Shared nearest neighbor clustering. -
Uses of Reference in elki.clustering.affinitypropagation
Classes in elki.clustering.affinitypropagation with annotations of type Reference Modifier and Type Class Description classAffinityPropagation<O>Cluster analysis by affinity propagation. -
Uses of Reference in elki.clustering.biclustering
Classes in elki.clustering.biclustering with annotations of type Reference Modifier and Type Class Description classChengAndChurchCheng and Church biclustering. -
Uses of Reference in elki.clustering.correlation
Classes in elki.clustering.correlation with annotations of type Reference Modifier and Type Class Description classCASHThe CASH algorithm is a subspace clustering algorithm based on the Hough transform.classCOPACCOPAC is an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions.classERiCPerforms correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.classFourC4C identifies local subgroups of data objects sharing a uniform correlation.classHiCOImplementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters.classLMCLUSLinear manifold clustering in high dimensional spaces by stochastic search.classORCLUSORCLUS: Arbitrarily ORiented projected CLUSter generation. -
Uses of Reference in elki.clustering.dbscan
Classes in elki.clustering.dbscan with annotations of type Reference Modifier and Type Class Description classGeneralizedDBSCANGeneralized DBSCAN, density-based clustering with noise.classGriDBSCAN<V extends NumberVector>Using Grid for Accelerating Density-Based Clustering.classLSDBC<O extends NumberVector>Locally Scaled Density Based Clustering. -
Uses of Reference in elki.clustering.dbscan.parallel
Classes in elki.clustering.dbscan.parallel with annotations of type Reference Modifier and Type Class Description classParallelGeneralizedDBSCANParallel version of DBSCAN clustering. -
Uses of Reference in elki.clustering.dbscan.predicates
Classes in elki.clustering.dbscan.predicates with annotations of type Reference Modifier and Type Class Description classCOPACNeighborPredicateCOPAC neighborhood predicate.classEpsilonNeighborPredicate<O>The default DBSCAN and OPTICS neighbor predicate, using an epsilon-neighborhood.classERiCNeighborPredicateERiC neighborhood predicate.classFourCCorePredicateThe 4C core point predicate.classFourCNeighborPredicate4C identifies local subgroups of data objects sharing a uniform correlation.classMinPtsCorePredicateThe DBSCAN default core point predicate -- having at leastMinPtsCorePredicate.minptsneighbors.classPreDeConCorePredicateThe PreDeCon core point predicate -- having at least minpts. neighbors, and a maximum preference dimensionality of lambda.classPreDeConNeighborPredicateNeighborhood predicate used by PreDeCon.classSimilarityNeighborPredicate<O>The DBSCAN neighbor predicate for aSimilarity, using all neighbors with a minimum similarity. -
Uses of Reference in elki.clustering.em
Classes in elki.clustering.em with annotations of type Reference Modifier and Type Class Description classBetulaGMMClustering by expectation maximization (EM-Algorithm), also known as Gaussian Mixture Modeling (GMM), with optional MAP regularization.classBetulaGMMWeightedClustering by expectation maximization (EM-Algorithm), also known as Gaussian Mixture Modeling (GMM), with optional MAP regularization.classKDTreeEMClustering by expectation maximization (EM-Algorithm), also known as Gaussian Mixture Modeling (GMM), calculated on a kd-tree. -
Uses of Reference in elki.clustering.em.models
Classes in elki.clustering.em.models with annotations of type Reference Modifier and Type Interface Description interfaceBetulaClusterModelModels usable in Betula EM clustering.interfaceBetulaClusterModelFactory<M extends BetulaClusterModel>Factory for initializing the EM models.classBetulaDiagonalGaussianModelFactoryFactory for EM with multivariate gaussian models using diagonal matrixes.classBetulaMultivariateGaussianModelFactoryFactory for EM with multivariate gaussian models using diagonal matrixes.classBetulaSphericalGaussianModelFactoryFactory for EM with multivariate gaussian models using a single variance. -
Uses of Reference in elki.clustering.hierarchical
Classes in elki.clustering.hierarchical with annotations of type Reference Modifier and Type Class Description classAbstractHDBSCAN<O>Abstract base class for HDBSCAN variations.classAnderberg<O>This is a modification of the classic AGNES algorithm for hierarchical clustering using a nearest-neighbor heuristic for acceleration.classCLINK<O>CLINK algorithm for complete linkage.classHACAM<O>Hierarchical Agglomerative Clustering Around Medoids (HACAM) is a hierarchical clustering method that merges the clusters with the smallest distance to the medoid of the union.classHDBSCANLinearMemory<O>Linear memory implementation of HDBSCAN clustering.classLinearMemoryNNChain<O extends NumberVector>NNchain clustering algorithm with linear memory, for particular linkages (that can be aggregated) and numerical vector data only.classMiniMaxAnderberg<O>This is a modification of the classic MiniMax algorithm for hierarchical clustering using a nearest-neighbor heuristic for acceleration.classOPTICSToHierarchicalConvert a OPTICS ClusterOrder to a hierarchical clustering.classSLINK<O>Implementation of the efficient Single-Link Algorithm SLINK of R.classSLINKHDBSCANLinearMemory<O>Linear memory implementation of HDBSCAN clustering based on SLINK. -
Uses of Reference in elki.clustering.hierarchical.birch
Classes in elki.clustering.hierarchical.birch with annotations of type Reference Modifier and Type Class Description classAverageInterclusterDistanceAverage intercluster distance.classAverageIntraclusterDistanceAverage intracluster distance.classCentroidEuclideanDistanceCentroid Euclidean distance.classCentroidManhattanDistanceCentroid Manhattan DistanceclassDiameterCriterionAverage Radius (R) criterion.classRadiusCriterionAverage Radius (R) criterion.classVarianceIncreaseDistanceVariance increase distance. -
Uses of Reference in elki.clustering.hierarchical.extraction
Classes in elki.clustering.hierarchical.extraction with annotations of type Reference Modifier and Type Class Description classClustersWithNoiseExtractionExtraction of a given number of clusters with a minimum size, and noise.classSimplifiedHierarchyExtractionExtraction of simplified cluster hierarchies, as proposed in HDBSCAN. -
Uses of Reference in elki.clustering.hierarchical.linkage
Classes in elki.clustering.hierarchical.linkage with annotations of type Reference Modifier and Type Class Description classCentroidLinkageCentroid linkage — Unweighted Pair-Group Method using Centroids (UPGMC).classFlexibleBetaLinkageFlexible-beta linkage as proposed by Lance and Williams.classGroupAverageLinkageGroup-average linkage clustering method (UPGMA).interfaceLinkageAbstract interface for implementing a new linkage method into hierarchical clustering.classMedianLinkageMedian-linkage — weighted pair group method using centroids (WPGMC).classSingleLinkageSingle-linkage ("minimum") clustering method.classWeightedAverageLinkageWeighted average linkage clustering method (WPGMA). -
Uses of Reference in elki.clustering.kmeans
Classes in elki.clustering.kmeans with annotations of type Reference Modifier and Type Class Description classBetulaLloydKMeansBIRCH/BETULA-based clustering algorithm that simply treats the leafs of the CFTree as clusters.classBisectingKMeans<V extends NumberVector,M extends MeanModel>The bisecting k-means algorithm works by starting with an initial partitioning into two clusters, then repeated splitting of the largest cluster to get additional clusters.classCompareMeans<V extends NumberVector>Compare-Means: Accelerated k-means by exploiting the triangle inequality and pairwise distances of means to prune candidate means.classElkanKMeans<V extends NumberVector>Elkan's fast k-means by exploiting the triangle inequality.classExponionKMeans<V extends NumberVector>Newlings's Exponion k-means algorithm, exploiting the triangle inequality.classGMeans<V extends NumberVector,M extends MeanModel>G-Means extends K-Means and estimates the number of centers with Anderson Darling Test.
Implemented as specialization of XMeans.classHamerlyKMeans<V extends NumberVector>Hamerly's fast k-means by exploiting the triangle inequality.classHartiganWongKMeans<V extends NumberVector>Hartigan and Wong k-means clustering.classKMeansMinusMinus<V extends NumberVector>k-means--: A Unified Approach to Clustering and Outlier Detection.classKMediansLloyd<V extends NumberVector>k-medians clustering algorithm, but using Lloyd-style bulk iterations instead of the more complicated approach suggested by Kaufman and Rousseeuw (seePAMinstead).classMacQueenKMeans<V extends NumberVector>The original k-means algorithm, using MacQueen style incremental updates; making this effectively an "online" (streaming) algorithm.classShallotKMeans<V extends NumberVector>Borgelt's Shallot k-means algorithm, exploiting the triangle inequality.classSimplifiedElkanKMeans<V extends NumberVector>Simplified version of Elkan's k-means by exploiting the triangle inequality.classSortMeans<V extends NumberVector>Sort-Means: Accelerated k-means by exploiting the triangle inequality and pairwise distances of means to prune candidate means (with sorting).classXMeans<V extends NumberVector,M extends MeanModel>X-means: Extending K-means with Efficient Estimation on the Number of Clusters.classYinYangKMeans<V extends NumberVector>Yin-Yang k-Means Clustering. -
Uses of Reference in elki.clustering.kmeans.initialization
Classes in elki.clustering.kmeans.initialization with annotations of type Reference Modifier and Type Class Description classAFKMC2AFK-MC² initializationclassFirstK<O>Initialize K-means by using the first k objects as initial means.classKMC2K-MC² initializationclassKMeansPlusPlus<O>K-Means++ initialization for k-means.classRandomNormalGeneratedInitialize k-means by generating random vectors (normal distributed with \(N(\mu,\sigma)\) in each dimension).classRandomUniformGeneratedInitialize k-means by generating random vectors (uniform, within the value range of the data set).classSampleKMeans<V extends NumberVector>Initialize k-means by running k-means on a sample of the data set only.classSphericalAFKMC2Spherical K-Means++ initialization with markov chains.classSphericalKMeansPlusPlus<O>Spherical K-Means++ initialization for k-means. -
Uses of Reference in elki.clustering.kmeans.initialization.betula
Classes in elki.clustering.kmeans.initialization.betula with annotations of type Reference Modifier and Type Class Description classCFKPlusPlusLeavesK-Means++-like initialization for BETULA k-means, treating the leaf clustering features as a flat list, and called "leaves" in the publication.classCFKPlusPlusTreeInitialize K-means by following tree paths weighted by their variance contribution.classCFKPlusPlusTrunkTrunk strategy for initializing k-means with BETULA: only the nodes up to a particular level are considered for k-means++ style initialization.classCFRandomlyChosenInitialize K-means by randomly choosing k existing elements as initial cluster centers for Clustering Features.classCFWeightedRandomlyChosenInitialize K-means by randomly choosing k existing elements as initial cluster centers for Clustering Features.classInterclusterWeightInitialization via n2 * D2²(cf1, cf2), which supposedly is closes to the idea of k-means++ initialization.classSquaredEuclideanWeightUse the squared Euclidean distance only for distance measurement.classVarianceWeightVariance-based weighting scheme for k-means clustering with BETULA. -
Uses of Reference in elki.clustering.kmeans.quality
Classes in elki.clustering.kmeans.quality with annotations of type Reference Modifier and Type Class Description classAkaikeInformationCriterionXMeansAkaike Information Criterion (AIC).classBayesianInformationCriterionBayesian Information Criterion (BIC), also known as Schwarz criterion (SBC, SBIC) for the use with evaluating k-means results.classBayesianInformationCriterionXMeansBayesian Information Criterion (BIC), also known as Schwarz criterion (SBC, SBIC) for the use with evaluating k-means results.classBayesianInformationCriterionZhaoDifferent version of the BIC criterion.Methods in elki.clustering.kmeans.quality with annotations of type Reference Modifier and Type Method Description static doubleAbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering. -
Uses of Reference in elki.clustering.kmeans.spherical
Classes in elki.clustering.kmeans.spherical with annotations of type Reference Modifier and Type Class Description classEuclideanSphericalElkanKMeans<V extends NumberVector>Elkan's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.classEuclideanSphericalHamerlyKMeans<V extends NumberVector>A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.classEuclideanSphericalSimplifiedElkanKMeans<V extends NumberVector>A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.classSphericalKMeans<V extends NumberVector>The standard spherical k-means algorithm. -
Uses of Reference in elki.clustering.kmedoids
Classes in elki.clustering.kmedoids with annotations of type Reference Modifier and Type Class Description classCLARANS<O>CLARANS: a method for clustering objects for spatial data mining is inspired by PAM (partitioning around medoids,PAM) and CLARA and also based on sampling.classFastCLARA<V>Clustering Large Applications (CLARA) with theFastPAMimprovements, to increase scalability in the number of clusters.classFastCLARANS<V>A faster variation of CLARANS, that can explore O(k) as many swaps at a similar cost by considering all medoids for each candidate non-medoid.classFasterCLARA<O>Clustering Large Applications (CLARA) with theFastPAMimprovements, to increase scalability in the number of clusters.classFasterPAM<O>Variation of FastPAM that eagerly performs any swap that yields an improvement during an iteration.classFastPAM<O>FastPAM: An improved version of PAM, that is usually O(k) times faster.classFastPAM1<O>FastPAM1: A version of PAM that is O(k) times faster, i.e., now in O((n-k)²).classReynoldsPAM<O>The Partitioning Around Medoids (PAM) algorithm with some additional optimizations proposed by Reynolds et al. -
Uses of Reference in elki.clustering.kmedoids.initialization
Classes in elki.clustering.kmedoids.initialization with annotations of type Reference Modifier and Type Class Description classGreedyG<O>Initialization method for k-medoids that combines the Greedy (PAMBUILD) with "alternate" refinement steps.classLAB<O>Linear approximative BUILD (LAB) initialization for FastPAM (and k-means).classParkJun<O>Initialization method proposed by Park and Jun. -
Uses of Reference in elki.clustering.optics
Classes in elki.clustering.optics with annotations of type Reference Modifier and Type Class Description classAbstractOPTICS<O>The OPTICS algorithm for density-based hierarchical clustering.classDeLiClu<V extends NumberVector>DeliClu: Density-Based Hierarchical ClusteringclassFastOPTICS<V extends NumberVector>FastOPTICS algorithm (Fast approximation of OPTICS)classOPTICSHeap<O>The OPTICS algorithm for density-based hierarchical clustering.classOPTICSList<O>The OPTICS algorithm for density-based hierarchical clustering. -
Uses of Reference in elki.clustering.silhouette
Classes in elki.clustering.silhouette with annotations of type Reference Modifier and Type Class Description classFasterMSC<O>Fast and Eager Medoid Silhouette Clustering.classFastMSC<O>Fast Medoid Silhouette Clustering. -
Uses of Reference in elki.clustering.subspace
Classes in elki.clustering.subspace with annotations of type Reference Modifier and Type Class Description classCLIQUEImplementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality.classDiSHAlgorithm for detecting subspace hierarchies.classDOCDOC is a sampling based subspace clustering algorithm.classFastDOCThe heuristic variant of the DOC algorithm, FastDOCclassHiSCImplementation of the HiSC algorithm, an algorithm for detecting hierarchies of subspace clusters.classP3CP3C: A Robust Projected Clustering Algorithm.classPreDeConPreDeCon computes clusters of subspace preference weighted connected points.classPROCLUSThe PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces.classSUBCLU<V extends NumberVector>Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces. -
Uses of Reference in elki.clustering.uncertain
Classes in elki.clustering.uncertain with annotations of type Reference Modifier and Type Class Description classCenterOfMassMetaClustering<C extends Clustering<?>>Center-of-mass meta clustering reduces uncertain objects to their center of mass, then runs a vector-oriented clustering algorithm on this data set.classCKMeansRun k-means on the centers of each uncertain object.classFDBSCANFDBSCAN is an adaption of DBSCAN for fuzzy (uncertain) objects.classFDBSCANNeighborPredicateDensity-based Clustering of Applications with Noise and Fuzzy objects (FDBSCAN) is an Algorithm to find sets in a fuzzy database that are density-connected with minimum probability.classRepresentativeUncertainClusteringRepresentative clustering of uncertain data.classUKMeansUncertain K-Means clustering, using the average deviation from the center. -
Uses of Reference in elki.data.projection.random
Classes in elki.data.projection.random with annotations of type Reference Modifier and Type Class Description classAchlioptasRandomProjectionFamilyRandom projections as suggested by Dimitris Achlioptas.classCauchyRandomProjectionFamilyRandom projections using Cauchy distributions (1-stable).classGaussianRandomProjectionFamilyRandom projections using Cauchy distributions (1-stable).classRandomSubsetProjectionFamilyRandom projection family based on selecting random features.classSimplifiedRandomHyperplaneProjectionFamilyRandom hyperplane projection family. -
Uses of Reference in elki.database.ids.integer
Classes in elki.database.ids.integer with annotations of type Reference Modifier and Type Class Description (package private) classIntegerDBIDArrayQuickSortClass to sort an integer DBID array, using a modified quicksort. -
Uses of Reference in elki.datasource.filter.transform
Classes in elki.datasource.filter.transform with annotations of type Reference Modifier and Type Class Description classLinearDiscriminantAnalysisFilter<V extends NumberVector>Linear Discriminant Analysis (LDA) / Fisher's linear discriminant.classPerturbationFilter<V extends NumberVector>A filter to perturb the values by adding micro-noise. -
Uses of Reference in elki.distance
Classes in elki.distance with annotations of type Reference Modifier and Type Class Description classCanberraDistanceCanberra distance function, a variation of Manhattan distance.classClarkDistanceClark distance function for vector spaces.classMahalanobisDistanceMahalanobis quadratic form distance for feature vectors. -
Uses of Reference in elki.distance.colorhistogram
Classes in elki.distance.colorhistogram with annotations of type Reference Modifier and Type Class Description classHistogramIntersectionDistanceIntersection distance for color histograms.classHSBHistogramQuadraticDistanceDistance function for HSB color histograms based on a quadratic form and color similarity.classRGBHistogramQuadraticDistanceDistance function for RGB color histograms based on a quadratic form and color similarity. -
Uses of Reference in elki.distance.geo
Classes in elki.distance.geo with annotations of type Reference Modifier and Type Class Description classDimensionSelectingLatLngDistanceDistance function for 2D vectors in Latitude, Longitude form.classLatLngDistanceDistance function for 2D vectors in Latitude, Longitude form.classLngLatDistanceDistance function for 2D vectors in Longitude, Latitude form. -
Uses of Reference in elki.distance.histogram
Classes in elki.distance.histogram with annotations of type Reference Modifier and Type Class Description classHistogramMatchDistanceDistance function based on histogram matching, i.e., Manhattan distance on the cumulative density function. -
Uses of Reference in elki.distance.probabilistic
Classes in elki.distance.probabilistic with annotations of type Reference Modifier and Type Class Description classChiSquaredDistanceχ² distance function, symmetric version.classKullbackLeiblerDivergenceAsymmetricDistanceKullback-Leibler divergence, also known as relative entropy, information deviation, or just KL-distance (albeit asymmetric).classKullbackLeiblerDivergenceReverseAsymmetricDistanceKullback-Leibler divergence, also known as relative entropy, information deviation or just KL-distance (albeit asymmetric).classSqrtJensenShannonDivergenceDistanceThe square root of Jensen-Shannon divergence is a metric.classTriangularDiscriminationDistanceTriangular Discrimination has relatively tight upper and lower bounds to the Jensen-Shannon divergence, but is much less expensive.classTriangularDistanceTriangular Distance has relatively tight upper and lower bounds to the (square root of the) Jensen-Shannon divergence, but is much less expensive. -
Uses of Reference in elki.distance.set
Classes in elki.distance.set with annotations of type Reference Modifier and Type Class Description classHammingDistanceComputes the Hamming distance of arbitrary vectors - i.e. counting, on how many places they differ.classJaccardSimilarityDistanceA flexible extension of Jaccard similarity to non-binary vectors. -
Uses of Reference in elki.distance.strings
Classes in elki.distance.strings with annotations of type Reference Modifier and Type Class Description classLevenshteinDistanceClassic Levenshtein distance on strings.classNormalizedLevenshteinDistanceLevenshtein distance on strings, normalized by string length. -
Uses of Reference in elki.distance.timeseries
Classes in elki.distance.timeseries with annotations of type Reference Modifier and Type Class Description classDerivativeDTWDistanceDerivative Dynamic Time Warping distance for numerical vectors.classDTWDistanceDynamic Time Warping distance (DTW) for numerical vectors.classEDRDistanceEdit Distance on Real Sequence distance for numerical vectors.classERPDistanceEdit Distance With Real Penalty distance for numerical vectors.classLCSSDistanceLongest Common Subsequence distance for numerical vectors. -
Uses of Reference in elki.evaluation.clustering
Classes in elki.evaluation.clustering with annotations of type Reference Modifier and Type Class Description classEditDistanceEdit distance measures.classMaximumMatchingAccuracyCalculates the accuracy of a clustering based on the maximum set matching found by the Hungarian algorithm.classPairSetsIndexThe Pair Sets Index calculates an index based on the maximum matching of relative cluster sizes by the Hungarian algorithm.classSetMatchingPuritySet matching purity measures.Methods in elki.evaluation.clustering with annotations of type Reference Modifier and Type Method Description doublePairCounting. adjustedRandIndex()Computes the adjusted Rand index (ARI).doubleSetMatchingPurity. f1Measure()Get the set matching F1-MeasuredoubleSetMatchingPurity. fMeasureFirst()Get the Van Rijsbergen’s F measure (asymmetric) for first clusteringdoubleSetMatchingPurity. fMeasureSecond()Get the Van Rijsbergen’s F measure (asymmetric) for second clusteringdoublePairCounting. fowlkesMallows()Computes the pair-counting Fowlkes-mallows (flat only, non-hierarchical!)doubleEntropy. geometricNMI()Get the geometric mean normalized mutual information (using the square root).doublePairCounting. jaccard()Computes the Jaccard indexdoubleEntropy. jointNMI()Get the joint-normalized mutual information.doubleEntropy. maxNMI()Get the max-normalized mutual information.doubleEntropy. minNMI()Get the min-normalized mutual information.longPairCounting. mirkin()Computes the Mirkin index, aka Equivalence Mismatch Distance.doubleSetMatchingPurity. purity()Get the set matchings purity (first:second clustering) (normalized, 1 = equal)doublePairCounting. randIndex()Computes the Rand index (RI). -
Uses of Reference in elki.evaluation.clustering.internal
Classes in elki.evaluation.clustering.internal with annotations of type Reference Modifier and Type Class Description classCIndex<O>Compute the C-index of a data set.classConcordantPairsGammaTauCompute the Gamma Criterion of a data set.classDaviesBouldinIndexCompute the Davies-Bouldin index of a data set.classDBCV<O>Compute the Density-Based Clustering Validation Index.classPBMIndexCompute the PBM index of a clusteringclassSilhouette<O>Compute the silhouette of a data set.classVarianceRatioCriterionCompute the Variance Ratio Criterion of a data set, also known as Calinski-Harabasz index.Methods in elki.evaluation.clustering.internal with annotations of type Reference Modifier and Type Method Description doubleConcordantPairsGammaTau. computeTau(long c, long d, double m, long wd, long bd)Compute the Tau correlation measure -
Uses of Reference in elki.evaluation.clustering.pairsegments
Classes in elki.evaluation.clustering.pairsegments with annotations of type Reference Modifier and Type Class Description classClusterPairSegmentAnalysisEvaluate clustering results by building segments for their pairs: shared pairs and differences.classSegmentsCreates segments of two or more clusterings. -
Uses of Reference in elki.evaluation.outlier
Classes in elki.evaluation.outlier with annotations of type Reference Modifier and Type Class Description classOutlierPrecisionRecallCurveCompute a curve containing the precision values for an outlier detection method.classOutlierPrecisionRecallGainCurveCompute a curve containing the precision gain and revall gain values for an outlier detection method.classOutlierSmROCCurveSmooth ROC curves are a variation of classic ROC curves that takes the scores into account. -
Uses of Reference in elki.evaluation.scores
Classes in elki.evaluation.scores with annotations of type Reference Modifier and Type Class Description classDCGEvaluationDiscounted Cumulative Gain.classNDCGEvaluationNormalized Discounted Cumulative Gain.classPRGCEvaluationCompute the area under the precision-recall-gain curve -
Uses of Reference in elki.index.laesa
Classes in elki.index.laesa with annotations of type Reference Modifier and Type Class Description classLAESA<O>Linear Approximating and Eliminating Search Algorithm -
Uses of Reference in elki.index.lsh.hashfamilies
Classes in elki.index.lsh.hashfamilies with annotations of type Reference Modifier and Type Class Description classEuclideanHashFunctionFamily2-stable hash function family for Euclidean distances.classManhattanHashFunctionFamily2-stable hash function family for Euclidean distances. -
Uses of Reference in elki.index.lsh.hashfunctions
Classes in elki.index.lsh.hashfunctions with annotations of type Reference Modifier and Type Class Description classCosineLocalitySensitiveHashFunctionRandom projection family to use with sparse vectors.classMultipleProjectionsLocalitySensitiveHashFunctionLSH hash function for vector space data. -
Uses of Reference in elki.index.preprocessed.fastoptics
Classes in elki.index.preprocessed.fastoptics with annotations of type Reference Modifier and Type Class Description classRandomProjectedNeighborsAndDensitiesRandom Projections used for computing neighbors and density estimates. -
Uses of Reference in elki.index.preprocessed.knn
Classes in elki.index.preprocessed.knn with annotations of type Reference Modifier and Type Class Description classNaiveProjectedKNNPreprocessor<O extends NumberVector>Compute the approximate k nearest neighbors using 1 dimensional projections.classNNDescent<O>NN-descent (also known as KNNGraph) is an approximate nearest neighbor search algorithm beginning with a random sample, then iteratively refining this sample until.classRandomSampleKNNPreprocessor<O>Class that computed the kNN only on a random sample.classSpacefillingKNNPreprocessor<O extends NumberVector>Compute the nearest neighbors approximatively using space filling curves.classSpacefillingMaterializeKNNPreprocessor<O extends NumberVector>Compute the nearest neighbors approximatively using space filling curves. -
Uses of Reference in elki.index.projected
Classes in elki.index.projected with annotations of type Reference Modifier and Type Class Description classPINN<O extends NumberVector>Projection-Indexed nearest-neighbors (PINN) is an index to retrieve the nearest neighbors in high dimensional spaces by using a random projection based index. -
Uses of Reference in elki.index.tree.betula.distance
Classes in elki.index.tree.betula.distance with annotations of type Reference Modifier and Type Class Description classBIRCHAverageInterclusterDistanceAverage intercluster distance.classBIRCHAverageIntraclusterDistanceAverage intracluster distance.classBIRCHRadiusDistanceAverage Radius (R) criterion.classBIRCHVarianceIncreaseDistanceVariance increase distance. -
Uses of Reference in elki.index.tree.metrical.covertree
Classes in elki.index.tree.metrical.covertree with annotations of type Reference Modifier and Type Class Description classCoverTree<O>Cover tree data structure (in-memory). -
Uses of Reference in elki.index.tree.metrical.mtreevariants.mtree
Classes in elki.index.tree.metrical.mtreevariants.mtree with annotations of type Reference Modifier and Type Class Description classMTree<O>MTree is a metrical index structure based on the concepts of the M-Tree. -
Uses of Reference in elki.index.tree.metrical.mtreevariants.strategies.insert
Classes in elki.index.tree.metrical.mtreevariants.strategies.insert with annotations of type Reference Modifier and Type Class Description classMinimumEnlargementInsert<N extends AbstractMTreeNode<?,N,E>,E extends MTreeEntry>Minimum enlargement insert - default insertion strategy for the M-tree. -
Uses of Reference in elki.index.tree.metrical.mtreevariants.strategies.split
Classes in elki.index.tree.metrical.mtreevariants.strategies.split with annotations of type Reference Modifier and Type Class Description classMLBDistSplit<E extends MTreeEntry,N extends AbstractMTreeNode<?,N,E>>Encapsulates the required methods for a split of a node in an M-Tree.classMMRadSplit<E extends MTreeEntry,N extends AbstractMTreeNode<?,N,E>>Encapsulates the required methods for a split of a node in an M-Tree.classMRadSplit<E extends MTreeEntry,N extends AbstractMTreeNode<?,N,E>>Encapsulates the required methods for a split of a node in an M-Tree.classMSTSplit<E extends MTreeEntry,N extends AbstractMTreeNode<?,N,E>>Splitting algorithm using the minimum spanning tree (MST), as proposed by the Slim-Tree variant.classRandomSplit<E extends MTreeEntry,N extends AbstractMTreeNode<?,N,E>>Encapsulates the required methods for a split of a node in an M-Tree. -
Uses of Reference in elki.index.tree.metrical.mtreevariants.strategies.split.distribution
Classes in elki.index.tree.metrical.mtreevariants.strategies.split.distribution with annotations of type Reference Modifier and Type Class Description classBalancedDistributionBalanced entry distribution strategy of the M-tree.classGeneralizedHyperplaneDistributionGeneralized hyperplane entry distribution strategy of the M-tree. -
Uses of Reference in elki.index.tree.metrical.vptree
Classes in elki.index.tree.metrical.vptree with annotations of type Reference Modifier and Type Class Description classGNAT<O>Geometric Near-neighbor Access Tree (GNAT), also known as Multi Vantage Point Tree or MVP-Tree.classVPTree<O>Vantage Point Tree with no additional information -
Uses of Reference in elki.index.tree.spatial.kd
Classes in elki.index.tree.spatial.kd with annotations of type Reference Modifier and Type Class Description classMemoryKDTree<O extends NumberVector>Implementation of a static in-memory K-D-tree.classMemoryKDTree.KDTreeKNNSearcherkNN query for the k-d-tree.classMemoryKDTree.KDTreeRangeSearcherRange query for the k-d-tree.classMinimalisticMemoryKDTree<O extends NumberVector>Simple implementation of a static in-memory K-D-tree.classMinimalisticMemoryKDTree.KDTreeKNNSearcherkNN query for the k-d-tree.classMinimalisticMemoryKDTree.KDTreeRangeSearcherRange query for the k-d-tree.classSmallMemoryKDTree<O extends NumberVector>Simple implementation of a static in-memory K-D-tree.classSmallMemoryKDTree.KDTreeKNNSearcherkNN query for the k-d-tree.classSmallMemoryKDTree.KDTreeRangeSearcherRange query for the k-d-tree. -
Uses of Reference in elki.index.tree.spatial.kd.split
Classes in elki.index.tree.spatial.kd.split with annotations of type Reference Modifier and Type Class Description classMeanVarianceSplitSplit on the median of the axis with the largest variance.classMedianVarianceSplitSplit on the median of the axis with the largest variance. -
Uses of Reference in elki.index.tree.spatial.rstarvariants.query
Classes in elki.index.tree.spatial.rstarvariants.query with annotations of type Reference Modifier and Type Class Description classEuclideanRStarTreeKNNQuery<O extends NumberVector>Instance of a KNN query for a particular spatial index.classEuclideanRStarTreeRangeQuery<O extends NumberVector>Instance of a range query for a particular spatial index.classRStarTreeKNNSearcher<O extends SpatialComparable>Instance of a KNN query for a particular spatial index.classRStarTreeRangeSearcher<O extends SpatialComparable>Instance of a range query for a particular spatial index. -
Uses of Reference in elki.index.tree.spatial.rstarvariants.rstar
Classes in elki.index.tree.spatial.rstarvariants.rstar with annotations of type Reference Modifier and Type Class Description classRStarTreeRStarTree is a spatial index structure based on the concepts of the R*-Tree. -
Uses of Reference in elki.index.tree.spatial.rstarvariants.strategies.bulk
Classes in elki.index.tree.spatial.rstarvariants.strategies.bulk with annotations of type Reference Modifier and Type Class Description classOneDimSortBulkSplitSimple bulk loading strategy by sorting the data along the first dimension.classSortTileRecursiveBulkSplitSort-Tile-Recursive aims at tiling the data space with a grid-like structure for partitioning the dataset into the required number of buckets.classSpatialSortBulkSplitBulk loading by spatially sorting the objects, then partitioning the sorted list appropriately. -
Uses of Reference in elki.index.tree.spatial.rstarvariants.strategies.insert
Classes in elki.index.tree.spatial.rstarvariants.strategies.insert with annotations of type Reference Modifier and Type Class Description classApproximativeLeastOverlapInsertionStrategyThe choose subtree method proposed by the R*-Tree with slightly better performance for large leaf sizes (linear approximation).classCombinedInsertionStrategyUse two different insertion strategies for directory and leaf nodes.classLeastEnlargementInsertionStrategyThe default R-Tree insertion strategy: find rectangle with least volume enlargement.classLeastEnlargementWithAreaInsertionStrategyA slight modification of the default R-Tree insertion strategy: find rectangle with least volume enlargement, but choose least area on ties.classLeastOverlapInsertionStrategyThe choose subtree method proposed by the R*-Tree for leaf nodes. -
Uses of Reference in elki.index.tree.spatial.rstarvariants.strategies.overflow
Classes in elki.index.tree.spatial.rstarvariants.strategies.overflow with annotations of type Reference Modifier and Type Class Description classLimitedReinsertOverflowTreatmentLimited reinsertions, as proposed by the R*-Tree: For each real insert, allow reinsertions to happen only once per level. -
Uses of Reference in elki.index.tree.spatial.rstarvariants.strategies.reinsert
Classes in elki.index.tree.spatial.rstarvariants.strategies.reinsert with annotations of type Reference Modifier and Type Class Description classCloseReinsertReinsert objects on page overflow, starting with close objects first (even when they will likely be inserted into the same page again!)classFarReinsertReinsert objects on page overflow, starting with farther objects first (even when they will likely be inserted into the same page again!) -
Uses of Reference in elki.index.tree.spatial.rstarvariants.strategies.split
Classes in elki.index.tree.spatial.rstarvariants.strategies.split with annotations of type Reference Modifier and Type Class Description classAngTanLinearSplitLine-time complexity split proposed by Ang and Tan.classGreeneSplitQuadratic-time complexity split as used by Diane Greene for the R-Tree.classRTreeLinearSplitLinear-time complexity greedy split as used by the original R-Tree.classRTreeQuadraticSplitQuadratic-time complexity greedy split as used by the original R-Tree.classTopologicalSplitterEncapsulates the required parameters for a topological split of a R*-Tree. -
Uses of Reference in elki.index.vafile
Classes in elki.index.vafile with annotations of type Reference Modifier and Type Class Description classDAFileDimension approximation file, a one-dimensional part of thePartialVAFile.classPartialVAFile<V extends NumberVector>PartialVAFile.classVAFile<V extends NumberVector>Vector-approximation file (VAFile) -
Uses of Reference in elki.itemsetmining
Classes in elki.itemsetmining with annotations of type Reference Modifier and Type Class Description classAPRIORIThe APRIORI algorithm for Mining Association Rules.classEclatEclat is a depth-first discovery algorithm for mining frequent itemsets.classFPGrowthFP-Growth is an algorithm for mining the frequent itemsets by using a compressed representation of the database calledFPGrowth.FPTree. -
Uses of Reference in elki.itemsetmining.associationrules
Classes in elki.itemsetmining.associationrules with annotations of type Reference Modifier and Type Class Description classAssociationRuleGenerationAssociation rule generation from frequent itemsets -
Uses of Reference in elki.itemsetmining.associationrules.interest
Classes in elki.itemsetmining.associationrules.interest with annotations of type Reference Modifier and Type Class Description classAddedValueAdded value (AV) interestingness measure: \( \text{confidence}(X \rightarrow Y) - \text{support}(Y) = P(Y|X)-P(Y) \).classCertaintyFactorCertainty factor (CF; Loevinger) interestingness measure. \( \tfrac{\text{confidence}(X \rightarrow Y) - \text{support}(Y)}{\text{support}(\neg Y)} \).classConfidenceConfidence interestingness measure, \( \tfrac{\text{support}(X \cup Y)}{\text{support}(X)} = \tfrac{P(X \cap Y)}{P(X)}=P(Y|X) \).classConvictionConviction interestingness measure: \(\frac{P(X) P(\neg Y)}{P(X\cap\neg Y)}\).classCosineCosine interestingness measure, \(\tfrac{\text{support}(A\cup B)}{\sqrt{\text{support}(A)\text{support}(B)}} =\tfrac{P(A\cap B)}{\sqrt{P(A)P(B)}}\).classJMeasureJ-Measure interestingness measure.classKlosgenKlösgen interestingness measure.classLeverageLeverage interestingness measure.classLiftLift interestingness measure.classSebagSchonauerSebag Schonauer interestingness measure. -
Uses of Reference in elki.math
Methods in elki.math with annotations of type Reference Modifier and Type Method Description static doubleMean. highPrecision(double... data)Static helper function, with extra precision -
Uses of Reference in elki.math.geodesy
Classes in elki.math.geodesy with annotations of type Reference Modifier and Type Class Description classSphereUtilClass with utility functions for distance computations on the sphere.Methods in elki.math.geodesy with annotations of type Reference Modifier and Type Method Description static doubleSphereUtil. ellipsoidVincentyFormulaRad(double f, double lat1, double lon1, double lat2, double lon2)Compute the approximate great-circle distance of two points.static doubleSphereUtil. haversineFormulaRad(double lat1, double lon1, double lat2, double lon2)Compute the approximate great-circle distance of two points using the Haversine formulastatic doubleSphereUtil. latlngMinDistDeg(double plat, double plng, double rminlat, double rminlng, double rmaxlat, double rmaxlng)Point to rectangle minimum distance.static doubleSphereUtil. latlngMinDistRad(double plat, double plng, double rminlat, double rminlng, double rmaxlat, double rmaxlng)Point to rectangle minimum distance.static doubleSphereUtil. latlngMinDistRadFull(double plat, double plng, double rminlat, double rminlng, double rmaxlat, double rmaxlng)Point to rectangle minimum distance.static doubleSphereUtil. sphericalVincentyFormulaRad(double lat1, double lon1, double lat2, double lon2)Compute the approximate great-circle distance of two points. -
Uses of Reference in elki.math.geometry
Classes in elki.math.geometry with annotations of type Reference Modifier and Type Class Description classAlphaShapeCompute the alpha-shape of a point set, using Delaunay triangulation.classGrahamScanConvexHull2DClasses to compute the convex hull of a set of points in 2D, using the classic Grahams scan.classPrimsMinimumSpanningTreePrim's algorithm for finding the minimum spanning tree.classSweepHullDelaunay2DCompute the Convex Hull and/or Delaunay Triangulation, using the sweep-hull approach of David Sinclair. -
Uses of Reference in elki.math.linearalgebra
Methods in elki.math.linearalgebra with annotations of type Reference Modifier and Type Method Description static doubleVMath. mahalanobisDistance(double[][] B, double[] a, double[] c)Matrix multiplication, (a-c)T * B * (a-c) -
Uses of Reference in elki.math.linearalgebra.pca
Classes in elki.math.linearalgebra.pca with annotations of type Reference Modifier and Type Class Description classAutotuningPCAPerforms a self-tuning local PCA based on the covariance matrices of given objects.classWeightedCovarianceMatrixBuilderCovarianceMatrixBuilderwith weights. -
Uses of Reference in elki.math.spacefillingcurves
Classes in elki.math.spacefillingcurves with annotations of type Reference Modifier and Type Class Description classBinarySplitSpatialSorterSpatially sort the data set by repetitive binary splitting, circulating through the dimensions.classHilbertSpatialSorterSort object along the Hilbert Space Filling curve by mapping them to their Hilbert numbers and sorting them.classPeanoSpatialSorterBulk-load an R-tree index by presorting the objects with their position on the Peano curve. -
Uses of Reference in elki.math.statistics.dependence
Classes in elki.math.statistics.dependence with annotations of type Reference Modifier and Type Class Description classDCorDistance correlation.classHoeffdingsDCalculate Hoeffding's D as a measure of dependence.classHoughSpaceMeasureHSM: Compute the "interestingness" of dimension connections using the Hough transformation.classMaximumConditionalEntropyCompute a mutual information based dependence measure using a nested means discretization, originally proposed for ordering axes in parallel coordinate plots.classMCDEDependenceImplementation of bivariate Monte Carlo Density Estimation as described inclassSlopeDependenceArrange dimensions based on the entropy of the slope spectrum.classSlopeInversionDependenceArrange dimensions based on the entropy of the slope spectrum. -
Uses of Reference in elki.math.statistics.dependence.mcde
Classes in elki.math.statistics.dependence.mcde with annotations of type Reference Modifier and Type Class Description classMWPTestImplementation of Mann-Whitney U test returning the p-value (not the test statistic, thus MWP) forMCDEDependence. -
Uses of Reference in elki.math.statistics.distribution
Classes in elki.math.statistics.distribution with annotations of type Reference Modifier and Type Class Description classHaltonUniformDistributionHalton sequences are a pseudo-uniform distribution.classSkewGeneralizedNormalDistributionGeneralized normal distribution by adding a skew term, similar to lognormal distributions.Methods in elki.math.statistics.distribution with annotations of type Reference Modifier and Type Method Description static doubleNormalDistribution. cdf(double x, double mu, double sigma)Cumulative probability density function (CDF) of a normal distribution.protected static doubleGammaDistribution. chisquaredProbitApproximation(double p, double nu, double g)Approximate probit for chi squared distributionprivate static doublePoissonDistribution. devianceTerm(double x, double np)Evaluate the deviance term of the saddle point approximation.static doubleGammaDistribution. digamma(double x)Compute the Psi / Digamma functionstatic doubleNormalDistribution. erfc(double x)Complementary error function for Gaussian distributions = Normal distributions.static doubleNormalDistribution. erfcinv(double y)Inverse error function.static doublePoissonDistribution. pmf(double x, int n, double p)Poisson probability mass function (PMF) for integer values.static doubleChiSquaredDistribution. quantile(double x, double dof)Return the quantile function for this distributionstatic doubleGammaDistribution. quantile(double p, double k, double theta)Compute probit (inverse cdf) for Gamma distributions.static doubleNormalDistribution. standardNormalCDF(double x)Cumulative probability density function (CDF) of a normal distribution.private static doublePoissonDistribution. stirlingError(double n)Calculates the Stirling Errorprivate static doublePoissonDistribution. stirlingError(int n)Calculates the Stirling Error -
Uses of Reference in elki.math.statistics.distribution.estimator
Classes in elki.math.statistics.distribution.estimator with annotations of type Reference Modifier and Type Class Description classCauchyMADEstimatorEstimate Cauchy distribution parameters using Median and MAD.classEMGOlivierNorbergEstimatorNaive distribution estimation using mean and sample variance.classExponentialLMMEstimatorEstimate the parameters of a Gamma Distribution, using the methods of L-Moments (LMM).classExponentialMADEstimatorEstimate Exponential distribution parameters using Median and MAD.classExponentialMedianEstimatorEstimate Exponential distribution parameters using Median and MAD.classGammaChoiWetteEstimatorEstimate distribution parameters using the method by Choi and Wette.classGammaLMMEstimatorEstimate the parameters of a Gamma Distribution, using the methods of L-Moments (LMM).classGammaMOMEstimatorSimple parameter estimation for the Gamma distribution.classGeneralizedExtremeValueLMMEstimatorEstimate the parameters of a Generalized Extreme Value Distribution, using the methods of L-Moments (LMM).classGeneralizedLogisticAlternateLMMEstimatorEstimate the parameters of a Generalized Logistic Distribution, using the methods of L-Moments (LMM).classGeneralizedParetoLMMEstimatorEstimate the parameters of a Generalized Pareto Distribution (GPD), using the methods of L-Moments (LMM).classGumbelLMMEstimatorEstimate the parameters of a Gumbel Distribution, using the methods of L-Moments (LMM).classGumbelMADEstimatorParameter estimation via median and median absolute deviation from median (MAD).classLaplaceMADEstimatorEstimate Laplace distribution parameters using Median and MAD.classLaplaceMLEEstimatorEstimate Laplace distribution parameters using Median and mean deviation from median.classLogisticLMMEstimatorEstimate the parameters of a Logistic Distribution, using the methods of L-Moments (LMM).classLogisticMADEstimatorEstimate Logistic distribution parameters using Median and MAD.classLogLogisticMADEstimatorEstimate Logistic distribution parameters using Median and MAD.classLogNormalBilkovaLMMEstimatorAlternate estimate the parameters of a log Gamma Distribution, using the methods of L-Moments (LMM) for the Generalized Normal Distribution.classLogNormalLMMEstimatorEstimate the parameters of a log Normal Distribution, using the methods of L-Moments (LMM) for the Generalized Normal Distribution.classLogNormalLogMADEstimatorEstimator using Medians.classNormalLMMEstimatorEstimate the parameters of a normal distribution using the method of L-Moments (LMM).classNormalMADEstimatorEstimator using Medians.classRayleighMADEstimatorEstimate the parameters of a RayleighDistribution using the MAD.classSkewGNormalLMMEstimatorEstimate the parameters of a skew Normal Distribution (Hoskin's Generalized Normal Distribution), using the methods of L-Moments (LMM).classUniformMADEstimatorEstimate Uniform distribution parameters using Median and MAD.classWeibullLogMADEstimatorParameter estimation via median and median absolute deviation from median (MAD). -
Uses of Reference in elki.math.statistics.distribution.estimator.meta
Classes in elki.math.statistics.distribution.estimator.meta with annotations of type Reference Modifier and Type Class Description classWinsorizingEstimator<D extends Distribution>Winsorizing or Georgization estimator. -
Uses of Reference in elki.math.statistics.intrinsicdimensionality
Classes in elki.math.statistics.intrinsicdimensionality with annotations of type Reference Modifier and Type Class Description classABIDEstimatorAngle based intrinsic dimensionality (ABID) estimator.classAggregatedHillEstimatorEstimator using the weighted average of multiple hill estimators.classALIDEstimatorALID estimator of the intrinsic dimensionality (maximum likelihood estimator for ID using auxiliary distances).classGEDEstimatorGeneralized Expansion Dimension for estimating the intrinsic dimensionality.classHillEstimatorHill estimator of the intrinsic dimensionality (maximum likelihood estimator for ID).classMOMEstimatorMethods of moments estimator, using the first moment (i.e. average).classRABIDEstimatorRaw angle based intrinsic dimensionality (RABID) estimator.classRVEstimatorRegularly Varying Functions estimator of the intrinsic dimensionalityclassTightLIDEstimatorTightLID Estimator (TLE) of the intrinsic dimensionality (maximum likelihood estimator for ID using auxiliary distances). -
Uses of Reference in elki.math.statistics.kernelfunctions
Fields in elki.math.statistics.kernelfunctions with annotations of type Reference Modifier and Type Field Description static doubleBiweightKernelDensityFunction. CANONICAL_BANDWIDTHCanonical bandwidth: 35^(1/5)static doubleEpanechnikovKernelDensityFunction. CANONICAL_BANDWIDTHCanonical bandwidth: 15^(1/5)static doubleGaussianKernelDensityFunction. CANONICAL_BANDWIDTHCanonical bandwidth: (1./(4*pi))^(1/10)static doubleTriweightKernelDensityFunction. CANONICAL_BANDWIDTHCanonical bandwidth: (9450/143)^(1/5)static doubleUniformKernelDensityFunction. CANONICAL_BANDWIDTHCanonical bandwidth: (9/2)^(1/5)Methods in elki.math.statistics.kernelfunctions with annotations of type Reference Modifier and Type Method Description doubleKernelDensityFunction. canonicalBandwidth()Get the canonical bandwidth for this kernel. -
Uses of Reference in elki.math.statistics.tests
Classes in elki.math.statistics.tests with annotations of type Reference Modifier and Type Class Description classAndersonDarlingTestPerform Anderson-Darling test for a Gaussian distribution.Methods in elki.math.statistics.tests with annotations of type Reference Modifier and Type Method Description static doubleAndersonDarlingTest. pValueCase0(double A2, int n)Calculates the p-value for an Anderson Darling statistic in the case where both center and variance are known.static doubleAndersonDarlingTest. pValueCase3(double A2)Calculates the p-value for an Anderson Darling statistic in the case where both center and variance are unknown.static doubleAndersonDarlingTest. removeBiasNormalDistribution(double A2, int n)Remove bias from the Anderson-Darling statistic if the mean and standard deviation were estimated from the data, and a normal distribution was assumed.static doubleAndersonDarlingTest. removeBiasNormalDistributionDAgostino(double A2, int n)Remove bias from the Anderson-Darling statistic if the mean and standard deviation were estimated from the data, and a normal distribution was assumed. -
Uses of Reference in elki.outlier
Classes in elki.outlier with annotations of type Reference Modifier and Type Class Description classCOP<V extends NumberVector>Correlation outlier probability: Outlier Detection in Arbitrarily Oriented SubspacesclassDWOF<O>Algorithm to compute dynamic-window outlier factors in a database based on a specified parameter k, which specifies the number of the neighbors to be considered during the calculation of the DWOF score.classGaussianUniformMixtureOutlier detection algorithm using a mixture model approach.classOPTICSOF<O>OPTICS-OF outlier detection algorithm, an algorithm to find Local Outliers in a database based on ideas fromOPTICSTypeAlgorithmclustering.classSimpleCOP<V extends NumberVector>Algorithm to compute local correlation outlier probability. -
Uses of Reference in elki.outlier.anglebased
Classes in elki.outlier.anglebased with annotations of type Reference Modifier and Type Class Description classABOD<V extends NumberVector>Angle-Based Outlier Detection / Angle-Based Outlier Factor.classFastABOD<V extends NumberVector>Fast-ABOD (approximateABOF) version of Angle-Based Outlier Detection / Angle-Based Outlier Factor.classLBABOD<V extends NumberVector>LB-ABOD (lower-bound) version of Angle-Based Outlier Detection / Angle-Based Outlier Factor. -
Uses of Reference in elki.outlier.clustering
Classes in elki.outlier.clustering with annotations of type Reference Modifier and Type Class Description classCBLOF<O extends NumberVector>Cluster-based local outlier factor (CBLOF).classGLOSHGlobal-Local Outlier Scores from Hierarchies.classKMeansMinusMinusOutlierDetectionk-means--: A Unified Approach to Clustering and Outlier Detection.classSilhouetteOutlierDetection<O>Outlier detection by using the Silhouette Coefficients. -
Uses of Reference in elki.outlier.density
Classes in elki.outlier.density with annotations of type Reference Modifier and Type Class Description classHySortODHypercube-Based Outlier Detection.classIsolationForestIsolation-Based Anomaly Detection. -
Uses of Reference in elki.outlier.distance
Classes in elki.outlier.distance with annotations of type Reference Modifier and Type Class Description classAbstractDBOutlier<O>Simple distance based outlier detection algorithms.classDBOutlierDetection<O>Simple distanced based outlier detection algorithm.classDBOutlierScore<O>Compute percentage of neighbors in the given neighborhood with size d.classHilOut<O extends NumberVector>Fast Outlier Detection in High Dimensional SpacesclassKNNDD<O>Nearest Neighbor Data Description.classKNNOutlier<O>Outlier Detection based on the distance of an object to its k nearest neighbor.classKNNWeightOutlier<O>Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.classLocalIsolationCoefficient<O>The Local Isolation Coefficient is the sum of the kNN distance and the average distance to its k nearest neighbors.classODIN<O>Outlier detection based on the in-degree of the kNN graph.classReferenceBasedOutlierDetectionReference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points.classSOS<O>Stochastic Outlier Selection.Methods in elki.outlier.distance with annotations of type Reference Modifier and Type Method Description protected static doubleSOS. estimateInitialBeta(DBIDRef ignore, DoubleDBIDListIter it, double perplexity)Estimate beta from the distances in a row. -
Uses of Reference in elki.outlier.distance.parallel
Classes in elki.outlier.distance.parallel with annotations of type Reference Modifier and Type Class Description classParallelKNNOutlier<O>Parallel implementation of KNN Outlier detection.classParallelKNNWeightOutlier<O>Parallel implementation of KNN Weight Outlier detection. -
Uses of Reference in elki.outlier.intrinsic
Classes in elki.outlier.intrinsic with annotations of type Reference Modifier and Type Class Description classIDOS<O>Intrinsic Dimensional Outlier Detection in High-Dimensional Data.classISOS<O>Intrinsic Stochastic Outlier Selection.classLID<O>Use intrinsic dimensionality for outlier detection. -
Uses of Reference in elki.outlier.lof
Classes in elki.outlier.lof with annotations of type Reference Modifier and Type Class Description classALOCI<V extends NumberVector>Fast Outlier Detection Using the "approximate Local Correlation Integral".classCOF<O>Connectivity-based Outlier Factor (COF).classFlexibleLOF<O>Flexible variant of the "Local Outlier Factor" algorithm.classINFLO<O>Influence Outliers using Symmetric Relationship (INFLO) using two-way search, is an outlier detection method based on LOF; but also using the reverse kNN.classKDEOS<O>Generalized Outlier Detection with Flexible Kernel Density Estimates.classLDF<O extends NumberVector>Outlier Detection with Kernel Density Functions.classLDOF<O>Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database.classLOCI<O>Fast Outlier Detection Using the "Local Correlation Integral".classLOF<O>Algorithm to compute density-based local outlier factors in a database based on a specified parameter-lof.k.classLoOP<O>LoOP: Local Outlier ProbabilitiesclassSimplifiedLOF<O>A simplified version of the original LOF algorithm, which does not use the reachability distance, yielding less stable results on inliers.classVarianceOfVolume<O extends SpatialComparable>Variance of Volume for outlier detection. -
Uses of Reference in elki.outlier.lof.parallel
Classes in elki.outlier.lof.parallel with annotations of type Reference Modifier and Type Class Description classParallelLOF<O>Parallel implementation of Local Outlier Factor using processors.classParallelSimplifiedLOF<O>Parallel implementation of Simplified-LOF Outlier detection using processors. -
Uses of Reference in elki.outlier.meta
Classes in elki.outlier.meta with annotations of type Reference Modifier and Type Class Description classFeatureBaggingA simple ensemble method called "Feature bagging" for outlier detection.classHiCSAlgorithm to compute High Contrast Subspaces for Density-Based Outlier Ranking. -
Uses of Reference in elki.outlier.spatial
Classes in elki.outlier.spatial with annotations of type Reference Modifier and Type Class Description classCTLuGLSBackwardSearchAlgorithm<V extends NumberVector>GLS-Backward Search is a statistical approach to detecting spatial outliers.classCTLuMeanMultipleAttributes<N,O extends NumberVector>Mean Approach is used to discover spatial outliers with multiple attributes.classCTLuMedianAlgorithm<N>Median Algorithm of C.classCTLuMedianMultipleAttributes<N,O extends NumberVector>Median Approach is used to discover spatial outliers with multiple attributes.classCTLuMoranScatterplotOutlier<N>Moran scatterplot outliers, based on the standardized deviation from the local and global means.classCTLuRandomWalkEC<O>Spatial outlier detection based on random walks.classCTLuScatterplotOutlier<N>Scatterplot-outlier is a spatial outlier detection method that performs a linear regression of object attributes and their neighbors average value.classCTLuZTestOutlier<N>Detect outliers by comparing their attribute value to the mean and standard deviation of their neighborhood.classSLOM<N,O>SLOM: a new measure for local spatial outliersclassSOF<N,O>The Spatial Outlier Factor (SOF) is a spatialLOFvariation.classTrimmedMeanApproach<N>A Trimmed Mean Approach to Finding Spatial Outliers. -
Uses of Reference in elki.outlier.subspace
Classes in elki.outlier.subspace with annotations of type Reference Modifier and Type Class Description classAbstractAggarwalYuOutlierAbstract base class for the sparse-grid-cell based outlier detection of Aggarwal and Yu.classAggarwalYuEvolutionaryEvolutionary variant (EAFOD) of the high-dimensional outlier detection algorithm by Aggarwal and Yu.classAggarwalYuNaiveBruteForce variant of the high-dimensional outlier detection algorithm by Aggarwal and Yu.classOutRankS1OutRank: ranking outliers in high dimensional data.classOUTRESAdaptive outlierness for subspace outlier ranking (OUTRES).classSOD<V extends NumberVector>Subspace Outlier Degree: Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data. -
Uses of Reference in elki.outlier.svm
Classes in elki.outlier.svm with annotations of type Reference Modifier and Type Class Description classLibSVMOneClassOutlierDetection<V extends NumberVector>Outlier-detection using one-class support vector machines.classOCSVM<V>Outlier-detection using one-class support vector machines.classSVDD<V>Support Vector Data Description for outlier detection. -
Uses of Reference in elki.projection
Classes in elki.projection with annotations of type Reference Modifier and Type Class Description classBarnesHutTSNE<O>t-SNE using Barnes-Hut-Approximation.classGaussianAffinityMatrixBuilder<O>Compute the affinity matrix for SNE and tSNE using a Gaussian distribution with a constant sigma.classIntrinsicNearestNeighborAffinityMatrixBuilder<O>Build sparse affinity matrix using the nearest neighbors only, adjusting for intrinsic dimensionality.classNearestNeighborAffinityMatrixBuilder<O>Build sparse affinity matrix using the nearest neighbors only.classPerplexityAffinityMatrixBuilder<O>Compute the affinity matrix for SNE and tSNE.classSNE<O>Stochastic Neighbor Embedding is a projection technique designed for visualization that tries to preserve the nearest neighbor structure.classTSNE<O>t-Stochastic Neighbor Embedding is a projection technique designed for visualization that tries to preserve the nearest neighbor structure. -
Uses of Reference in elki.result
Classes in elki.result with annotations of type Reference Modifier and Type Class Description classKMLOutputHandlerClass to handle KML output. -
Uses of Reference in elki.similarity
Classes in elki.similarity with annotations of type Reference Modifier and Type Class Description classKulczynski1SimilarityKulczynski similarity 1.classKulczynski2SimilarityKulczynski similarity 2. -
Uses of Reference in elki.similarity.cluster
Classes in elki.similarity.cluster with annotations of type Reference Modifier and Type Class Description classClusteringAdjustedRandIndexSimilarityMeasure the similarity of clusters via the Adjusted Rand Index.classClusteringBCubedF1SimilarityMeasure the similarity of clusters via the BCubed F1 Index.classClusteringFowlkesMallowsSimilarityMeasure the similarity of clusters via the Fowlkes-Mallows Index.classClusteringRandIndexSimilarityMeasure the similarity of clusters via the Rand Index.classClusterJaccardSimilarityMeasure the similarity of clusters via the Jaccard coefficient. -
Uses of Reference in elki.timeseries
Classes in elki.timeseries with annotations of type Reference Modifier and Type Class Description classSigniTrendChangeDetectionSigni-Trend detection algorithm applies to a single time-series. -
Uses of Reference in elki.utilities.datastructures
Classes in elki.utilities.datastructures with annotations of type Reference Modifier and Type Class Description classKuhnMunkresSternA version of Kuhn-Munkres inspired by the implementation of Kevin L.classKuhnMunkresWongKuhn-Munkres optimal matching (aka the Hungarian algorithm), supposedly in a modern variant. -
Uses of Reference in elki.utilities.datastructures.arrays
Classes in elki.utilities.datastructures.arrays with annotations of type Reference Modifier and Type Class Description classIntegerArrayQuickSortClass to sort an int array, using a modified quicksort. -
Uses of Reference in elki.utilities.datastructures.unionfind
Classes in elki.utilities.datastructures.unionfind with annotations of type Reference Modifier and Type Class Description classWeightedQuickUnionIntegerUnion-find algorithm for primitive integers, with optimizations.classWeightedQuickUnionRangeDBIDsUnion-find algorithm forDBIDRangeonly, with optimizations.classWeightedQuickUnionStaticDBIDsUnion-find algorithm forStaticDBIDs, with optimizations. -
Uses of Reference in elki.utilities.documentation
Methods in elki.utilities.documentation that return Reference Modifier and Type Method Description Reference[]value()References of the class / field / method. -
Uses of Reference in elki.utilities.random
Classes in elki.utilities.random with annotations of type Reference Modifier and Type Class Description classXoroshiro128NonThreadsafeRandomReplacement for Java'sRandomclass, using a different random number generation strategy.classXorShift1024NonThreadsafeRandomReplacement for Java'sRandomclass, using a different random number generation strategy.classXorShift64NonThreadsafeRandomReplacement for Java'sRandomclass, using a different random number generation strategy.Methods in elki.utilities.random with annotations of type Reference Modifier and Type Method Description intXoroshiro128NonThreadsafeRandom. nextInt(int n)Returns a pseudorandom, uniformly distributedintvalue between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.intXorShift1024NonThreadsafeRandom. nextInt(int n)Returns a pseudorandom, uniformly distributedintvalue between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.intXorShift64NonThreadsafeRandom. nextInt(int n)Returns a pseudorandom, uniformly distributedintvalue between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence. -
Uses of Reference in elki.utilities.scaling.outlier
Classes in elki.utilities.scaling.outlier with annotations of type Reference Modifier and Type Class Description classHeDESNormalizationOutlierScalingNormalization used by HeDESclassMinusLogGammaScalingScaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF.classMinusLogStandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1].classMixtureModelOutlierScalingTries to fit a mixture model (exponential for inliers and gaussian for outliers) to the outlier score distribution.classMultiplicativeInverseScalingScaling function to invert values by computing 1/x, but in a variation that maps the values to the [0:1] interval and avoiding division by 0.classOutlierGammaScalingScaling that can map arbitrary values to a probability in the range of [0:1] by assuming a Gamma distribution on the values.classOutlierMinusLogScalingScaling function to invert values by computing -log(x)classSigmoidOutlierScalingTries to fit a sigmoid to the outlier scores and use it to convert the values to probability estimates in the range of 0.0 to 1.0classSqrtStandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1].classStandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1]. -
Uses of Reference in elki.visualization.parallel3d
Classes in elki.visualization.parallel3d with annotations of type Reference Modifier and Type Class Description classOpenGL3DParallelCoordinates<O extends NumberVector>Simple JOGL2 based parallel coordinates visualization.classParallel3DRenderer<O extends NumberVector>Renderer for 3D parallel plots. -
Uses of Reference in elki.visualization.parallel3d.layout
Classes in elki.visualization.parallel3d.layout with annotations of type Reference Modifier and Type Class Description classCompactCircularMSTLayout3DPCSimple circular layout based on the minimum spanning tree.classMultidimensionalScalingMSTLayout3DPCLayout the axes by multi-dimensional scaling.classSimpleCircularMSTLayout3DPCSimple circular layout based on the minimum spanning tree. -
Uses of Reference in elki.visualization.projector
Classes in elki.visualization.projector with annotations of type Reference Modifier and Type Class Description classParallelPlotProjector<V extends SpatialComparable>ParallelPlotProjector is responsible for producing a parallel axes visualization. -
Uses of Reference in elki.visualization.visualizers.pairsegments
Classes in elki.visualization.visualizers.pairsegments with annotations of type Reference Modifier and Type Class Description classCircleSegmentsVisualizerVisualizer to draw circle segments of clusterings and enable interactive selection of segments. -
Uses of Reference in elki.visualization.visualizers.scatterplot.density
Methods in elki.visualization.visualizers.scatterplot.density with annotations of type Reference Modifier and Type Method Description private double[]DensityEstimationOverlay.Instance. initializeBandwidth(double[][] data) -
Uses of Reference in elki.visualization.visualizers.scatterplot.outlier
Classes in elki.visualization.visualizers.scatterplot.outlier with annotations of type Reference Modifier and Type Class Description classBubbleVisualizationGenerates a SVG-Element containing bubbles.classCOPVectorVisualizationVisualize error vectors as produced by COP. -
Uses of Reference in tutorial.clustering
Classes in tutorial.clustering with annotations of type Reference Modifier and Type Class Description classNaiveAgglomerativeHierarchicalClustering3<O>This tutorial will step you through implementing a well known clustering algorithm, agglomerative hierarchical clustering, in multiple steps.classNaiveAgglomerativeHierarchicalClustering4<O>This tutorial will step you through implementing a well known clustering algorithm, agglomerative hierarchical clustering, in multiple steps. -
Uses of Reference in tutorial.outlier
Classes in tutorial.outlier with annotations of type Reference Modifier and Type Class Description classODIN<O>Outlier detection based on the in-degree of the kNN graph.
-