| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask
 main routine. | 
| de.lmu.ifi.dbs.elki.algorithm.classification | 
 Classification algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms
 
 Clustering algorithms are supposed to implement the
  
Algorithm-Interface. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation | 
 Affinity Propagation (AP) clustering. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | 
 Correlation clustering algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.em | 
 Expectation-Maximization clustering algorithm. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | 
 Generalized DBSCAN
 
 Generalized DBSCAN is an abstraction of the original DBSCAN idea,
 that allows the use of arbitrary "neighborhood" and "core point" predicates. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | 
 Hierarchical agglomerative clustering (HAC). 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.optics | 
 OPTICS family of clustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | 
 Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected
 clustering algorithms or subspace clustering algorithms according to the
 classical but somewhat obsolete classification schema of clustering
 algorithms for axis-parallel subspaces. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | 
 Trivial clustering algorithms: all in one, no clusters, label clusterings
 
 These methods are mostly useful for providing a reference result in
 evaluation. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain | 
 Clustering algorithms for uncertain data. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.itemsetmining | 
 Algorithms for frequent itemset mining such as APRIORI. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | 
 Outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased | 
 Angle-based outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.clustering | 
 Clustering based outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.distance | 
 Distance-based outlier detection algorithms, such as DBOutlier and kNN. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic | 
 Outlier detection algorithms based on intrinsic dimensionality. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.lof | 
 LOF family of outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | 
 Meta outlier detection algorithms: external scores, score rescaling 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | 
 Spatial outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods
 
 Methods that detect outliers in subspaces (projections) of the data set. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.projection | 
 Data projections (see also preprocessing filters for basic projections). 
 | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | 
 Statistical analysis algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.timeseries | 
 Algorithms for change point detection in time series. 
 | 
| de.lmu.ifi.dbs.elki.datasource | 
 Data normalization (and reconstitution) of data sets 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.transform | 
 Data space transformations 
 | 
| de.lmu.ifi.dbs.elki.datasource.parser | 
 Parsers for different file formats and data types
 
 The general use-case for any parser is to create objects out of an
  
InputStream (e.g. by reading a data file). | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries | 
 Distance functions designed for time series
 
 Note that some regular distance functions (e.g., Euclidean) are also used on
 time series. 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | 
 Indexes providing KNN and rKNN data. 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.localpca | 
 Index using a preprocessed local PCA 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.preference | 
 Indexes storing preference vectors 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.snn | 
 Indexes providing nearest neighbor sets 
 | 
| de.lmu.ifi.dbs.elki.index.projected | 
 Projected indexes for data 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
| de.lmu.ifi.dbs.elki.index.vafile | 
 Vector Approximation File 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra | 
 The linear algebra package provides classes and computational methods for
 operations on matrices and vectors. 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter | 
 Filter eigenvectors based on their eigenvalues. 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier | 
 Visualizers for outlier scores based on 2D projections 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DependencyDerivator<V extends NumberVector>
Dependency derivator computes quantitatively linear dependencies among
 attributes of a given dataset based on a linear correlation PCA. 
 | 
class  | 
DummyAlgorithm<O extends NumberVector>
Dummy algorithm, which just iterates over all points once, doing a 10NN query
 each. 
 | 
class  | 
KNNDistancesSampler<O>
Provides an order of the kNN-distances for all objects within the database. 
 | 
class  | 
KNNJoin<V extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors. 
 | 
class  | 
NullAlgorithm
Null Algorithm, which does nothing. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KNNClassifier<O>
KNNClassifier classifies instances based on the class distribution among the
 k nearest neighbors in a database. 
 | 
class  | 
PriorProbabilityClassifier
Classifier to classify instances based on the prior probability of classes in
 the database, without using the actual data values. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DBSCAN<O>
Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to
 find density-connected sets in a database. 
 | 
class  | 
GriDBSCAN<V extends NumberVector>
Using Grid for Accelerating Density-Based Clustering. 
 | 
class  | 
SNNClustering<O>
Shared nearest neighbor clustering. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AffinityPropagationClusteringAlgorithm<O>
Cluster analysis by affinity propagation. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CASH<V extends NumberVector>
The CASH algorithm is a subspace clustering algorithm based on the Hough
 transform. 
 | 
class  | 
COPAC<V extends NumberVector>
COPAC is an algorithm to partition a database according to the correlation
 dimension of its objects and to then perform an arbitrary clustering
 algorithm over the partitions. 
 | 
class  | 
ERiC<V extends NumberVector>
Performs correlation clustering on the data partitioned according to local
 correlation dimensionality and builds a hierarchy of correlation clusters
 that allows multiple inheritance from the clustering result. 
 | 
class  | 
FourC<V extends NumberVector>
4C identifies local subgroups of data objects sharing a uniform correlation. 
 | 
class  | 
HiCO<V extends NumberVector>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
 of correlation clusters. 
 | 
class  | 
ORCLUS<V extends NumberVector>
ORCLUS: Arbitrarily ORiented projected CLUSter generation. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EM<V extends NumberVector,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
 Mixture Modeling (GMM), with optional MAP regularization. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LSDBC<O extends NumberVector>
Locally Scaled Density Based Clustering. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HDBSCANLinearMemory<O>
Linear memory implementation of HDBSCAN clustering. 
 | 
class  | 
SLINK<O>
Implementation of the efficient Single-Link Algorithm SLINK of R. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KMeansCompare<V extends NumberVector>
Compare-Means: Accelerated k-means by exploiting the triangle inequality and
 pairwise distances of means to prune candidate means. 
 | 
class  | 
KMeansLloyd<V extends NumberVector>
The standard k-means algorithm, using bulk iterations and commonly attributed
 to Lloyd and Forgy (independently). 
 | 
class  | 
KMeansMacQueen<V extends NumberVector>
The original k-means algorithm, using MacQueen style incremental updates;
 making this effectively an "online" (streaming) algorithm. 
 | 
class  | 
KMeansMinusMinus<V extends NumberVector>
k-means--: A Unified Approach to Clustering and Outlier Detection. 
 | 
class  | 
KMeansSort<V extends NumberVector>
Sort-Means: Accelerated k-means by exploiting the triangle inequality and
 pairwise distances of means to prune candidate means (with sorting). 
 | 
class  | 
KMedoidsPAM<V>
The original Partitioning Around Medoids (PAM) algorithm or k-medoids
 clustering, as proposed by Kaufman and Rousseeuw in "Clustering by means of
 Medoids". 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DeLiClu<V extends NumberVector>
DeliClu: Density-Based Hierarchical Clustering
 
 A hierarchical algorithm to find density-connected sets in a database,
 closely related to OPTICS but exploiting the structure of a R-tree for
 acceleration. 
 | 
class  | 
OPTICSHeap<O>
The OPTICS algorithm for density-based hierarchical clustering. 
 | 
class  | 
OPTICSList<O>
The OPTICS algorithm for density-based hierarchical clustering. 
 | 
class  | 
OPTICSXi
Extract clusters from OPTICS Plots using the original Xi extraction. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CLIQUE
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
 dense clusters in subspaces of maximum dimensionality. 
 | 
class  | 
DiSH<V extends NumberVector>
Algorithm for detecting subspace hierarchies. 
 | 
class  | 
DOC<V extends NumberVector>
DOC is a sampling based subspace clustering algorithm. 
 | 
class  | 
FastDOC<V extends NumberVector>
The heuristic variant of the DOC algorithm, FastDOC
 
 Reference:
 
 C. 
 | 
class  | 
HiSC<V extends NumberVector>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
 of subspace clusters. 
 | 
class  | 
P3C<V extends NumberVector>
P3C: A Robust Projected Clustering Algorithm. 
 | 
class  | 
PreDeCon<V extends NumberVector>
PreDeCon computes clusters of subspace preference weighted connected points. 
 | 
class  | 
PROCLUS<V extends NumberVector>
The PROCLUS algorithm, an algorithm to find subspace clusters in high
 dimensional spaces. 
 | 
class  | 
SUBCLU<V extends NumberVector>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
 shaped and positioned clusters in subspaces. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ByLabelClustering
Pseudo clustering using labels. 
 | 
class  | 
ByLabelHierarchicalClustering
Pseudo clustering using labels. 
 | 
class  | 
ByModelClustering
Pseudo clustering using annotated models. 
 | 
class  | 
TrivialAllInOne
Trivial pseudo-clustering that just considers all points to be one big
 cluster. 
 | 
class  | 
TrivialAllNoise
Trivial pseudo-clustering that just considers all points to be noise. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
FDBSCAN
FDBSCAN is an adaption of DBSCAN for fuzzy (uncertain) objects. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
APRIORI
The APRIORI algorithm for Mining Association Rules. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
COP<V extends NumberVector>
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
 Subspaces
 
 Reference:
 
 Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek 
Outlier Detection in Arbitrarily Oriented Subspaces Proc.  | 
class  | 
DWOF<O>
Algorithm to compute dynamic-window outlier factors in a database based on a
 specified parameter k, which specifies the number of the neighbors to be
 considered during the calculation of the DWOF score. 
 | 
class  | 
GaussianModel<V extends NumberVector>
Outlier detection based on the probability density of the single normal
 distribution. 
 | 
class  | 
GaussianUniformMixture<V extends NumberVector>
Outlier detection algorithm using a mixture model approach. 
 | 
class  | 
OPTICSOF<O>
OPTICS-OF outlier detection algorithm, an algorithm to find Local Outliers in
 a database based on ideas from  
OPTICSTypeAlgorithm clustering. | 
class  | 
SimpleCOP<V extends NumberVector>
Algorithm to compute local correlation outlier probability. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ABOD<V extends NumberVector>
Angle-Based Outlier Detection / Angle-Based Outlier Factor. 
 | 
class  | 
FastABOD<V extends NumberVector>
Fast-ABOD (approximateABOF) version of
 Angle-Based Outlier Detection / Angle-Based Outlier Factor. 
 | 
class  | 
LBABOD<V extends NumberVector>
LB-ABOD (lower-bound) version of
 Angle-Based Outlier Detection / Angle-Based Outlier Factor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CBLOF<O extends NumberVector>
Cluster-based local outlier factor (CBLOF). 
 | 
class  | 
EMOutlier<V extends NumberVector>
Outlier detection algorithm using EM Clustering. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DBOutlierDetection<O>
Simple distanced based outlier detection algorithm. 
 | 
class  | 
DBOutlierScore<O>
Compute percentage of neighbors in the given neighborhood with size d. 
 | 
class  | 
HilOut<O extends NumberVector>
Fast Outlier Detection in High Dimensional Spaces
 
 Outlier Detection using Hilbert space filling curves
 
 Reference:
 
 F. 
 | 
class  | 
KNNDD<O>
Nearest Neighbor Data Description. 
 | 
class  | 
KNNOutlier<O>
Outlier Detection based on the distance of an object to its k nearest
 neighbor. 
 | 
class  | 
KNNSOS<O>
kNN-based adaption of Stochastic Outlier Selection. 
 | 
class  | 
KNNWeightOutlier<O>
Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. 
 | 
class  | 
ODIN<O>
Outlier detection based on the in-degree of the kNN graph. 
 | 
class  | 
ReferenceBasedOutlierDetection
Reference-Based Outlier Detection algorithm, an algorithm that computes kNN
 distances approximately, using reference points. 
 | 
class  | 
SOS<O>
Stochastic Outlier Selection. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
IDOS<O>
Intrinsic Dimensional Outlier Detection in High-Dimensional Data. 
 | 
class  | 
ISOS<O>
Intrinsic Stochastic Outlier Selection. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ALOCI<O extends NumberVector>
Fast Outlier Detection Using the "approximate Local Correlation Integral". 
 | 
class  | 
COF<O>
Connectivity-based Outlier Factor (COF). 
 | 
class  | 
FlexibleLOF<O>
Flexible variant of the "Local Outlier Factor" algorithm. 
 | 
class  | 
INFLO<O>
Influence Outliers using Symmetric Relationship (INFLO) using two-way search,
 is an outlier detection method based on LOF; but also using the reverse kNN. 
 | 
class  | 
KDEOS<O>
Generalized Outlier Detection with Flexible Kernel Density Estimates. 
 | 
class  | 
LDF<O extends NumberVector>
Outlier Detection with Kernel Density Functions. 
 | 
class  | 
LDOF<O>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. 
 | 
class  | 
LOCI<O>
Fast Outlier Detection Using the "Local Correlation Integral". 
 | 
class  | 
LOF<O>
Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  
-lof.k. | 
class  | 
LoOP<O>
LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
FeatureBagging
A simple ensemble method called "Feature bagging" for outlier detection. 
 | 
class  | 
HiCS<V extends NumberVector>
Algorithm to compute High Contrast Subspaces for Density-Based Outlier
 Ranking. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector>
GLS-Backward Search is a statistical approach to detecting spatial outliers. 
 | 
class  | 
CTLuMedianAlgorithm<N>
Median Algorithm of C. 
 | 
class  | 
CTLuMoranScatterplotOutlier<N>
Moran scatterplot outliers, based on the standardized deviation from the
 local and global means. 
 | 
class  | 
CTLuRandomWalkEC<P>
Spatial outlier detection based on random walks. 
 | 
class  | 
CTLuScatterplotOutlier<N>
Scatterplot-outlier is a spatial outlier detection method that performs a
 linear regression of object attributes and their neighbors average value. 
 | 
class  | 
CTLuZTestOutlier<N>
Detect outliers by comparing their attribute value to the mean and standard
 deviation of their neighborhood. 
 | 
class  | 
SLOM<N,O>
SLOM: a new measure for local spatial outliers
 
 Reference:
 
 S. 
 | 
class  | 
SOF<N,O>
The Spatial Outlier Factor (SOF) is a spatial
  
LOF variation. | 
class  | 
TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AggarwalYuEvolutionary<V extends NumberVector>
Evolutionary variant (EAFOD) of the high-dimensional outlier detection
 algorithm by Aggarwal and Yu. 
 | 
class  | 
AggarwalYuNaive<V extends NumberVector>
BruteForce variant of the high-dimensional outlier detection algorithm by
 Aggarwal and Yu. 
 | 
class  | 
OutRankS1
OutRank: ranking outliers in high dimensional data. 
 | 
class  | 
SOD<V extends NumberVector>
Subspace Outlier Degree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
IntrinsicNearestNeighborAffinityMatrixBuilder<O>
Build sparse affinity matrix using the nearest neighbors only, adjusting for
 intrinsic dimensionality. 
 | 
class  | 
TSNE<O>
t-Stochastic Neighbor Embedding is a projection technique designed for
 visualization that tries to preserve the nearest neighbor structure. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DistanceStatisticsWithClasses<O>
Algorithm to gather statistics over the distance distribution in the data
 set. 
 | 
class  | 
EvaluateRankingQuality<V extends NumberVector>
Evaluate a distance function with respect to kNN queries. 
 | 
class  | 
RankingQualityHistogram<O>
Evaluate a distance function with respect to kNN queries. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OfflineChangePointDetectionAlgorithm
Off-line change point detection algorithm detecting a change in mean, based
 on the cumulative sum (CUSUM), same-variance assumption, and using bootstrap
 sampling for significance estimation. 
 | 
class  | 
SigniTrendChangeDetection
Signi-Trend detection algorithm applies to a single time-series. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EmptyDatabaseConnection
Pseudo database that is empty. 
 | 
class  | 
InputStreamDatabaseConnection
Database connection expecting input from an input stream such as stdin. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PerturbationFilter<V extends NumberVector>
A filter to perturb the values by adding micro-noise. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ArffParser
Parser to load WEKA .arff files into ELKI. 
 | 
class  | 
BitVectorLabelParser
Parser for parsing one BitVector per line, bits separated by whitespace. 
 | 
class  | 
LibSVMFormatParser<V extends SparseNumberVector>
Parser to read libSVM format files. 
 | 
class  | 
SparseNumberVectorLabelParser<V extends SparseNumberVector>
Parser for parsing one point per line, attributes separated by whitespace. 
 | 
class  | 
StringParser
Parser that loads a text file for use with string similarity measures. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DerivativeDTWDistanceFunction
Derivative Dynamic Time Warping distance for numerical vectors. 
 | 
class  | 
DTWDistanceFunction
Dynamic Time Warping distance (DTW) for numerical vectors. 
 | 
class  | 
EDRDistanceFunction
Edit Distance on Real Sequence distance for numerical vectors. 
 | 
class  | 
ERPDistanceFunction
Edit Distance With Real Penalty distance for numerical vectors. 
 | 
class  | 
LCSSDistanceFunction
Longest Common Subsequence distance for numerical vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MaterializeKNNAndRKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors and the reverse k
 nearest neighbors (and their distances) to each database object. 
 | 
class  | 
MaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
PartitionApproximationMaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractFilteredPCAIndex<NV extends NumberVector>
Abstract base class for a local PCA based index. 
 | 
class  | 
KNNQueryFilteredPCAIndex<NV extends NumberVector>
Provides the local neighborhood to be considered in the PCA as the k nearest
 neighbors of an object. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HiSCPreferenceVectorIndex<V extends NumberVector>
Preprocessor for HiSC preference vector assignment to objects of a certain
 database. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SharedNearestNeighborPreprocessor<O>
A preprocessor for annotation of the ids of nearest neighbors to each
 database object. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PINN<O extends NumberVector>
Projection-Indexed nearest-neighbors (PINN) is an index to retrieve the
 nearest neighbors in high dimensional spaces by using a random projection
 based index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MTree<O>
MTree is a metrical index structure based on the concepts of the M-Tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
RStarTree
RStarTree is a spatial index structure based on the concepts of the R*-Tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
VAFile<V extends NumberVector>
Vector-approximation file (VAFile)
 
 Reference:
 
 R. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
VMath
Class providing basic vector mathematics, for low-level vectors stored as
  
double[]. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
WeightedCovarianceMatrixBuilder
CovarianceMatrixBuilder with weights. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DropEigenPairFilter
The "drop" filter looks for the largest drop in normalized relative
 eigenvalues. 
 | 
class  | 
FirstNEigenPairFilter
The FirstNEigenPairFilter marks the n highest eigenpairs as strong
 eigenpairs, where n is a user specified number. 
 | 
class  | 
LimitEigenPairFilter
The LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue
 below the specified threshold (relative or absolute) as weak eigenpairs, the
 others are marked as strong eigenpairs. 
 | 
class  | 
PercentageEigenPairFilter
The PercentageEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. 
 | 
class  | 
ProgressiveEigenPairFilter
The ProgressiveEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. 
 | 
class  | 
RelativeEigenPairFilter
The RelativeEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and marks the first eigenpairs who are a certain factor above the
 average of the remaining eigenvalues. 
 | 
class  | 
SignificantEigenPairFilter
The SignificantEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and chooses the contrast of an Eigenvalue to the remaining
 Eigenvalues is maximal. 
 | 
class  | 
WeakEigenPairFilter
The WeakEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and returns the first eigenpairs who are above the average mark
 as "strong", the others as "weak". 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
COPVectorVisualization
Visualize error vectors as produced by COP. 
 | 
Copyright © 2019 ELKI Development Team. License information.