Uses of Interface
elki.database.datastore.WritableDoubleDataStore
-
Packages that use WritableDoubleDataStore Package Description elki.clustering.correlation Correlation clustering algorithms.elki.clustering.correlation.cash Helper classes for theCASH
algorithm.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.hierarchical Hierarchical agglomerative clustering (HAC).elki.clustering.hierarchical.extraction Extraction of partitional clusterings from hierarchical results.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.kmedoids.initialization elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.silhouette Silhouette clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.database.datastore General data store layer API (along the lines ofMap<DBID, T>
- use everywhere!)elki.database.datastore.memory Memory data store implementation for ELKI.elki.index.invertedlist Indexes using inverted lists.elki.outlier Outlier detection algorithms.elki.outlier.anglebased Angle-based outlier detection algorithms.elki.outlier.clustering Clustering based outlier detection.elki.outlier.distance Distance-based outlier detection algorithms, such as DBOutlier and kNN.elki.outlier.intrinsic Outlier detection algorithms based on intrinsic dimensionality.elki.outlier.lof LOF family of outlier detection algorithms.elki.parallel.processor Processor API of ELKI, and some essential shared processors.elki.visualization.style Style management for ELKI visualizations. -
-
Uses of WritableDoubleDataStore in elki.clustering.correlation
Fields in elki.clustering.correlation declared as WritableDoubleDataStore Modifier and Type Field Description private WritableDoubleDataStore
HiCO.Instance. tmpDistance
Temporary storage of distances. -
Uses of WritableDoubleDataStore in elki.clustering.correlation.cash
Fields in elki.clustering.correlation.cash with type parameters of type WritableDoubleDataStore Modifier and Type Field Description private java.util.Map<HyperBoundingBox,WritableDoubleDataStore>
CASHIntervalSplit. f_maxima
Caches maximum function values for given intervals, used for better split performance.private java.util.Map<HyperBoundingBox,WritableDoubleDataStore>
CASHIntervalSplit. f_minima
Caches minimum function values for given intervals, used for better split performance. -
Uses of WritableDoubleDataStore in elki.clustering.dbscan
Methods in elki.clustering.dbscan with parameters of type WritableDoubleDataStore Modifier and Type Method Description private void
LSDBC. fillDensities(KNNSearcher<DBIDRef> knnq, DBIDs ids, WritableDoubleDataStore dens)
Collect all densities into an array for sorting.private boolean
LSDBC. isLocalMaximum(double kdist, DBIDs neighbors, WritableDoubleDataStore kdists)
Test if a point is a local density maximum. -
Uses of WritableDoubleDataStore in elki.clustering.em
Methods in elki.clustering.em with parameters of type WritableDoubleDataStore Modifier and Type Method Description static <O> double
EM. assignProbabilitiesToInstances(Relation<? extends O> relation, java.util.List<? extends EMClusterModel<? super O,?>> models, WritableDataStore<double[]> probClusterIGivenX, WritableDoubleDataStore loglikelihoods)
Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions. -
Uses of WritableDoubleDataStore in elki.clustering.hierarchical
Methods in elki.clustering.hierarchical that return WritableDoubleDataStore Modifier and Type Method Description protected WritableDoubleDataStore
AbstractHDBSCAN. computeCoreDists(DBIDs ids, KNNSearcher<DBIDRef> knnQ, int minPts)
Compute the core distances for all objects.Methods in elki.clustering.hierarchical with parameters of type WritableDoubleDataStore Modifier and Type Method Description private void
CLINK. clinkstep3(DBIDArrayIter i, int n, WritableDBIDDataStore pi, WritableDoubleDataStore lambda, WritableDoubleDataStore m)
Third step: Determine the values for P and Lprivate void
CLINK. clinkstep4567(DBIDRef id, ArrayDBIDs ids, DBIDArrayIter it, int n, WritableDBIDDataStore pi, WritableDoubleDataStore lambda, WritableDoubleDataStore m)
Fourth to seventh step of CLINK: find best insertionprivate void
CLINK. clinkstep8(DBIDRef id, DBIDArrayIter it, int n, WritableDBIDDataStore pi, WritableDoubleDataStore lambda)
Update hierarchy.ClusterDensityMergeHistory
ClusterMergeHistoryBuilder. complete(WritableDoubleDataStore coredists)
Build a result with additional coredists information.protected void
CLINK. process(DBIDRef id, ArrayDBIDs ids, DBIDArrayIter it, int n, WritableDBIDDataStore pi, WritableDoubleDataStore lambda, WritableDoubleDataStore m)
CLINK main loop, based on the SLINK main loop.protected void
SLINK. process(DBIDRef id, ArrayDBIDs ids, DBIDArrayIter it, int n, WritableDBIDDataStore pi, WritableDoubleDataStore lambda, WritableDoubleDataStore m)
SLINK main loop.private void
SLINK. slinkstep3(DBIDRef id, DBIDArrayIter it, int n, WritableDBIDDataStore pi, WritableDoubleDataStore lambda, WritableDoubleDataStore m)
Third step: Determine the values for P and Lprivate void
SLINK. slinkstep4(DBIDRef id, DBIDArrayIter it, int n, WritableDBIDDataStore pi, WritableDoubleDataStore lambda)
Fourth step: Actualize the clusters if necessaryprivate void
SLINK. step2(DBIDRef id, DBIDArrayIter it, int n, DistanceQuery<? super O> distQuery, WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the pointer representation to the new object with the specified id.private void
SLINKHDBSCANLinearMemory. step2(DBIDRef id, DBIDs processedIDs, DistanceQuery<? super O> distQuery, DoubleDataStore coredists, WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the pointer representation to the new object with the specified id.private void
SLINK. step2primitive(DBIDRef id, DBIDArrayIter it, int n, Relation<? extends O> relation, PrimitiveDistance<? super O> distance, WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the pointer representation to the new object with the specified id.private void
SLINKHDBSCANLinearMemory. step3(DBIDRef id, WritableDBIDDataStore pi, WritableDoubleDataStore lambda, DBIDs processedIDs, WritableDoubleDataStore m)
Third step: Determine the values for P and Lprivate void
SLINKHDBSCANLinearMemory. step4(DBIDRef id, WritableDBIDDataStore pi, WritableDoubleDataStore lambda, DBIDs processedIDs)
Fourth step: Actualize the clusters if necessary -
Uses of WritableDoubleDataStore in elki.clustering.hierarchical.extraction
Methods in elki.clustering.hierarchical.extraction with parameters of type WritableDoubleDataStore Modifier and Type Method Description private double
HDBSCANHierarchyExtraction.Instance. collectChildren(HDBSCANHierarchyExtraction.TempCluster temp, Clustering<DendrogramModel> clustering, WritableDoubleDataStore glosh, HDBSCANHierarchyExtraction.TempCluster cur, Cluster<DendrogramModel> clus, boolean flatten)
Recursive flattening of clusters.private double
HDBSCANHierarchyExtraction.Instance. finalizeCluster(HDBSCANHierarchyExtraction.TempCluster temp, Clustering<DendrogramModel> clustering, WritableDoubleDataStore glosh, Cluster<DendrogramModel> parent, boolean flatten)
Make the cluster for the given object -
Uses of WritableDoubleDataStore in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as WritableDoubleDataStore Modifier and Type Field Description (package private) WritableDoubleDataStore
HamerlyKMeans.Instance. lower
Lower bounds(package private) WritableDoubleDataStore
HartiganWongKMeans.Instance. r1s
The value [NC(L1) * D(I,L1)^2] / [NC(L1) -1] will be remembered and will remain the same for Point I until cluster L1 is updated.(package private) WritableDoubleDataStore
HamerlyKMeans.Instance. upper
Upper bounds(package private) WritableDoubleDataStore
SimplifiedElkanKMeans.Instance. upper
Upper bounds(package private) WritableDoubleDataStore
YinYangKMeans.Instance. upper
Upper bound -
Uses of WritableDoubleDataStore in elki.clustering.kmeans.initialization
Fields in elki.clustering.kmeans.initialization declared as WritableDoubleDataStore Modifier and Type Field Description protected WritableDoubleDataStore
KMC2.Instance. weights
Weightsprotected WritableDoubleDataStore
KMeansPlusPlus.Instance. weights
Weightsprotected WritableDoubleDataStore
SphericalKMeansPlusPlus.Instance. weights
Weights -
Uses of WritableDoubleDataStore in elki.clustering.kmeans.spherical
Fields in elki.clustering.kmeans.spherical declared as WritableDoubleDataStore Modifier and Type Field Description (package private) WritableDoubleDataStore
EuclideanSphericalHamerlyKMeans.Instance. lower
Lower bounds(package private) WritableDoubleDataStore
SphericalHamerlyKMeans.Instance. lsim
Similarity lower bound.(package private) WritableDoubleDataStore
SphericalSimplifiedElkanKMeans.Instance. lsim
Similarity lower bound.(package private) WritableDoubleDataStore
SphericalSimplifiedHamerlyKMeans.Instance. lsim
Similarity lower bound.(package private) WritableDoubleDataStore
EuclideanSphericalHamerlyKMeans.Instance. upper
Upper bounds(package private) WritableDoubleDataStore
EuclideanSphericalSimplifiedElkanKMeans.Instance. upper
Upper bounds(package private) WritableDoubleDataStore
SphericalHamerlyKMeans.Instance. usim
Similarity upper bound.(package private) WritableDoubleDataStore
SphericalSimplifiedHamerlyKMeans.Instance. usim
Similarity upper bound. -
Uses of WritableDoubleDataStore in elki.clustering.kmedoids
Fields in elki.clustering.kmedoids declared as WritableDoubleDataStore Modifier and Type Field Description (package private) WritableDoubleDataStore
CLARANS.Assignment. nearest
Distance to the nearest medoid of each point.(package private) WritableDoubleDataStore
PAM.Instance. nearest
Distance to the nearest medoid of each point.(package private) WritableDoubleDataStore
CLARANS.Assignment. second
Distance to the second nearest medoid.(package private) WritableDoubleDataStore
PAM.Instance. second
Distance to the second nearest medoid.Methods in elki.clustering.kmedoids with parameters of type WritableDoubleDataStore Modifier and Type Method Description protected double
ReynoldsPAM.Instance. computeReassignmentCost(DBIDRef h, WritableDoubleDataStore tnearest)
Compute the reassignment cost, for all medoids in one pass.protected double
ReynoldsPAM.Instance. computeRemovalCost(int i, WritableDoubleDataStore tnearest)
Compute the cost of removing a medoid just once. -
Uses of WritableDoubleDataStore in elki.clustering.kmedoids.initialization
Methods in elki.clustering.kmedoids.initialization with parameters of type WritableDoubleDataStore Modifier and Type Method Description static double
GreedyG. findMedoid(DBIDs ids, DistanceQuery<?> distQ, int j, DBIDArrayMIter miter, double bestm, WritableDoubleDataStore temp, WritableDoubleDataStore tempbest, WritableDoubleDataStore mindist)
Find the best medoid of a given fixed set.protected static double
LAB. getMinDist(DBIDArrayIter j, DistanceQuery<?> distQ, DBIDArrayIter mi, WritableDoubleDataStore mindist)
Get the minimum distance to previous medoids. -
Uses of WritableDoubleDataStore in elki.clustering.optics
Fields in elki.clustering.optics declared as WritableDoubleDataStore Modifier and Type Field Description (package private) WritableDoubleDataStore
ClusterOrder. reachability
Reachability storage.protected WritableDoubleDataStore
GeneralizedOPTICS.Instance. reachability
Reachability storage.(package private) WritableDoubleDataStore
OPTICSList.Instance. reachability
Reachability storage.(package private) WritableDoubleDataStore
FastOPTICS. reachDist
Result: reachability distancesConstructors in elki.clustering.optics with parameters of type WritableDoubleDataStore Constructor Description ClusterOrder(ArrayModifiableDBIDs ids, WritableDoubleDataStore reachability, WritableDBIDDataStore predecessor)
ConstructorCorrelationClusterOrder(ArrayModifiableDBIDs ids, WritableDoubleDataStore reachability, WritableDBIDDataStore predecessor, WritableIntegerDataStore corrdim)
Constructor. -
Uses of WritableDoubleDataStore in elki.clustering.silhouette
Fields in elki.clustering.silhouette declared as WritableDoubleDataStore Modifier and Type Field Description protected WritableDoubleDataStore
FastMSC.Instance2. dm0
Distances to the first medoid.protected WritableDoubleDataStore
FastMSC.Instance2. dm1
Distances to the second medoid.(package private) WritableDoubleDataStore
PAMSIL.Instance. silhouettes
Store the per-point silhouette scores for plotting. -
Uses of WritableDoubleDataStore in elki.clustering.subspace
Fields in elki.clustering.subspace declared as WritableDoubleDataStore Modifier and Type Field Description private WritableDoubleDataStore
DiSH.Instance. tmpDistance
Temporary storage of distances.Constructors in elki.clustering.subspace with parameters of type WritableDoubleDataStore Constructor Description DiSHClusterOrder(ArrayModifiableDBIDs ids, WritableDoubleDataStore reachability, WritableDBIDDataStore predecessor, WritableIntegerDataStore corrdim, WritableDataStore<long[]> commonPreferenceVectors)
Constructor. -
Uses of WritableDoubleDataStore in elki.database.datastore
Methods in elki.database.datastore that return WritableDoubleDataStore Modifier and Type Method Description WritableDoubleDataStore
DataStoreFactory. makeDoubleStorage(DBIDs ids, int hints)
Make a new storage, to associate the given ids with an object of class dataclass.WritableDoubleDataStore
DataStoreFactory. makeDoubleStorage(DBIDs ids, int hints, double def)
Make a new storage, to associate the given ids with an object of class dataclass.static WritableDoubleDataStore
DataStoreUtil. makeDoubleStorage(DBIDs ids, int hints)
Make a new storage, to associate the given ids with an object of class dataclass.static WritableDoubleDataStore
DataStoreUtil. makeDoubleStorage(DBIDs ids, int hints, double def)
Make a new storage, to associate the given ids with an object of class dataclass. -
Uses of WritableDoubleDataStore in elki.database.datastore.memory
Classes in elki.database.datastore.memory that implement WritableDoubleDataStore Modifier and Type Class Description class
ArrayDoubleStore
A class to answer representation queries using the stored Array.class
MapIntegerDBIDDoubleStore
Writable data store for double values.Methods in elki.database.datastore.memory that return WritableDoubleDataStore Modifier and Type Method Description WritableDoubleDataStore
MemoryDataStoreFactory. makeDoubleStorage(DBIDs ids, int hints)
WritableDoubleDataStore
MemoryDataStoreFactory. makeDoubleStorage(DBIDs ids, int hints, double def)
-
Uses of WritableDoubleDataStore in elki.index.invertedlist
Fields in elki.index.invertedlist declared as WritableDoubleDataStore Modifier and Type Field Description protected WritableDoubleDataStore
InMemoryInvertedIndex. length
Length storage.Methods in elki.index.invertedlist with parameters of type WritableDoubleDataStore Modifier and Type Method Description private double
InMemoryInvertedIndex. naiveQuery(V obj, WritableDoubleDataStore scores, HashSetModifiableDBIDs cands)
Query the most similar objects, abstract version.private double
InMemoryInvertedIndex. naiveQueryDense(NumberVector obj, WritableDoubleDataStore scores, HashSetModifiableDBIDs cands)
Query the most similar objects, dense version.private double
InMemoryInvertedIndex. naiveQuerySparse(SparseNumberVector obj, WritableDoubleDataStore scores, HashSetModifiableDBIDs cands)
Query the most similar objects, sparse version. -
Uses of WritableDoubleDataStore in elki.outlier
Methods in elki.outlier with parameters of type WritableDoubleDataStore Modifier and Type Method Description private void
DWOF. clusterData(DBIDs ids, RangeSearcher<DBIDRef> rnnQuery, WritableDoubleDataStore radii, WritableDataStore<ModifiableDBIDs> labels)
This method applies a density based clustering algorithm.private void
DWOF. initializeRadii(DBIDs ids, KNNSearcher<DBIDRef> knnq, DistanceQuery<O> distFunc, WritableDoubleDataStore radii)
This method prepares a container for the radii of the objects and initializes radii according to the equation: initialRadii of a certain object = (absoluteMinDist of all objects) * (avgDist of the object) / (minAvgDist of all objects) -
Uses of WritableDoubleDataStore in elki.outlier.anglebased
Methods in elki.outlier.anglebased with parameters of type WritableDoubleDataStore Modifier and Type Method Description private void
FastABOD. fastABOD(Relation<V> relation, DBIDs ids, WritableDoubleDataStore abodvalues, DoubleMinMax minmaxabod)
Full kernel-based version.private boolean
FastABOD. kNNABOD(Relation<V> relation, DBIDs ids, WritableDoubleDataStore abodvalues, DoubleMinMax minmaxabod)
Simpler kNN based, can use more indexing. -
Uses of WritableDoubleDataStore in elki.outlier.clustering
Methods in elki.outlier.clustering with parameters of type WritableDoubleDataStore Modifier and Type Method Description private void
CBLOF. computeCBLOFs(Relation<O> relation, WritableDoubleDataStore cblofs, DoubleMinMax cblofMinMax, java.util.List<? extends Cluster<MeanModel>> largeClusters, java.util.List<? extends Cluster<MeanModel>> smallClusters)
Compute the CBLOF scores for all the data.private void
KMeansOutlierDetection. distanceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Simple distance-based scoring function.private void
KMeansOutlierDetection. singletonsScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Distance-based scoring that takes singletons into account.private void
CBLOF. storeCBLOFScore(WritableDoubleDataStore cblofs, DoubleMinMax cblofMinMax, double cblof, DBIDIter iter)
private void
KMeansOutlierDetection. varianceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Variance-based scoring function. -
Uses of WritableDoubleDataStore in elki.outlier.distance
Methods in elki.outlier.distance with parameters of type WritableDoubleDataStore Modifier and Type Method Description static void
SOS. nominateNeighbors(DBIDIter ignore, DBIDArrayIter di, double[] p, double norm, WritableDoubleDataStore scores)
Vote for neighbors not being outliers.protected void
ReferenceBasedOutlierDetection. updateDensities(WritableDoubleDataStore rbod_score, DoubleDBIDList referenceDists)
Update the density estimates for each object. -
Uses of WritableDoubleDataStore in elki.outlier.intrinsic
Methods in elki.outlier.intrinsic with parameters of type WritableDoubleDataStore Modifier and Type Method Description static void
ISOS. nominateNeighbors(DBIDIter ignore, DBIDArrayIter di, double[] p, double norm, WritableDoubleDataStore scores)
Vote for neighbors not being outliers.static DoubleMinMax
ISOS. transformScores(WritableDoubleDataStore scores, DBIDs ids, double logPerp, double phi)
Transform scores -
Uses of WritableDoubleDataStore in elki.outlier.lof
Fields in elki.outlier.lof declared as WritableDoubleDataStore Modifier and Type Field Description private WritableDoubleDataStore
FlexibleLOF.LOFResult. lofs
The LOF values of the objects.private WritableDoubleDataStore
FlexibleLOF.LOFResult. lrds
The LRD values of the objects.Methods in elki.outlier.lof that return WritableDoubleDataStore Modifier and Type Method Description WritableDoubleDataStore
FlexibleLOF.LOFResult. getLofs()
Get the LOF data store.WritableDoubleDataStore
FlexibleLOF.LOFResult. getLrds()
Get the LRD data store.Methods in elki.outlier.lof with parameters of type WritableDoubleDataStore Modifier and Type Method Description protected void
COF. computeAverageChainingDistances(KNNSearcher<DBIDRef> knnq, DistanceQuery<O> dq, DBIDs ids, WritableDoubleDataStore acds)
Computes the average chaining distance, the average length of a path through the given set of points to each target.private void
COF. computeCOFScores(KNNSearcher<DBIDRef> knnq, DBIDs ids, DoubleDataStore acds, WritableDoubleDataStore cofs, DoubleMinMax cofminmax)
Compute Connectivity outlier factors.protected void
INFLO. computeINFLO(Relation<O> relation, ModifiableDBIDs pruned, KNNSearcher<DBIDRef> knnq, WritableDataStore<ModifiableDBIDs> rNNminuskNNs, WritableDoubleDataStore inflos, DoubleMinMax inflominmax)
Compute the final INFLO scores.protected void
FlexibleLOF. computeLOFs(KNNSearcher<DBIDRef> knnq, DBIDs ids, DoubleDataStore lrds, WritableDoubleDataStore lofs, DoubleMinMax lofminmax)
Computes the Local outlier factor (LOF) of the specified objects.private void
LOF. computeLOFScores(KNNSearcher<DBIDRef> knnq, DBIDs ids, DoubleDataStore lrds, WritableDoubleDataStore lofs, DoubleMinMax lofminmax)
Compute local outlier factors.protected void
FlexibleLOF. computeLRDs(KNNSearcher<DBIDRef> knnq, DBIDs ids, WritableDoubleDataStore lrds)
Computes the local reachability density (LRD) of the specified objects.private void
LOF. computeLRDs(KNNSearcher<DBIDRef> knnq, DBIDs ids, WritableDoubleDataStore lrds)
Compute local reachability distances.protected void
KDEOS. computeOutlierScores(KNNSearcher<DBIDRef> knnq, DBIDs ids, WritableDataStore<double[]> densities, WritableDoubleDataStore kdeos, DoubleMinMax minmax)
Compute the final KDEOS scores.protected void
LoOP. computePDists(Relation<O> relation, KNNSearcher<DBIDRef> knn, WritableDoubleDataStore pdists)
Compute the probabilistic distances used by LoOP.protected double
LoOP. computePLOFs(Relation<O> relation, KNNSearcher<DBIDRef> knn, WritableDoubleDataStore pdists, WritableDoubleDataStore plofs)
Compute the LOF values, using the pdist distances.private void
SimplifiedLOF. computeSimplifiedLOFs(DBIDs ids, KNNSearcher<DBIDRef> knnq, WritableDoubleDataStore slrds, WritableDoubleDataStore lofs, DoubleMinMax lofminmax)
Compute the simplified LOF factors.private void
SimplifiedLOF. computeSimplifiedLRDs(DBIDs ids, KNNSearcher<DBIDRef> knnq, WritableDoubleDataStore lrds)
Compute the simplified reachability densities.private void
VarianceOfVolume. computeVolumes(KNNSearcher<DBIDRef> knnq, int dim, DBIDs ids, WritableDoubleDataStore vols)
Compute volumesprivate void
VarianceOfVolume. computeVOVs(KNNSearcher<DBIDRef> knnq, DBIDs ids, DoubleDataStore vols, WritableDoubleDataStore vovs, DoubleMinMax vovminmax)
Compute variance of volumes.Constructors in elki.outlier.lof with parameters of type WritableDoubleDataStore Constructor Description LOFResult(OutlierResult result, KNNSearcher<DBIDRef> kNNRefer, KNNSearcher<DBIDRef> kNNReach, WritableDoubleDataStore lrds, WritableDoubleDataStore lofs)
Encapsulates information generated during a run of theFlexibleLOF
algorithm. -
Uses of WritableDoubleDataStore in elki.parallel.processor
Fields in elki.parallel.processor declared as WritableDoubleDataStore Modifier and Type Field Description (package private) WritableDoubleDataStore
WriteDoubleDataStoreProcessor. store
Store to write toConstructors in elki.parallel.processor with parameters of type WritableDoubleDataStore Constructor Description WriteDoubleDataStoreProcessor(WritableDoubleDataStore store)
Constructor. -
Uses of WritableDoubleDataStore in elki.visualization.style
Fields in elki.visualization.style declared as WritableDoubleDataStore Modifier and Type Field Description (package private) WritableDoubleDataStore
ClusterStylingPolicy. intensities
Maps an ID to its best assignment value.
-