Uses of Interface
elki.index.tree.betula.features.ClusterFeature
-
Packages that use ClusterFeature Package Description elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.em.models elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization.betula Initialization methods for BIRCH-based k-means and EM clustering.elki.index.tree.betula BETULA clustering by aggregating the data into cluster features.elki.index.tree.betula.distance Distance functions for BETULA and BIRCH.elki.index.tree.betula.features Different variants of Betula and BIRCH cluster features. -
-
Uses of ClusterFeature in elki.clustering.em
Method parameters in elki.clustering.em with type arguments of type ClusterFeature Modifier and Type Method Description double
BetulaGMM. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.double
BetulaGMM. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.double
BetulaGMMWeighted. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)
double
BetulaGMMWeighted. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)
void
BetulaGMM. recomputeCovarianceMatrices(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.Map<ClusterFeature,double[]> probClusterIGivenX, java.util.List<? extends BetulaClusterModel> models, double prior, int n)
Recompute the covariance matrixes.void
BetulaGMM. recomputeCovarianceMatrices(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.Map<ClusterFeature,double[]> probClusterIGivenX, java.util.List<? extends BetulaClusterModel> models, double prior, int n)
Recompute the covariance matrixes. -
Uses of ClusterFeature in elki.clustering.em.models
Methods in elki.clustering.em.models with parameters of type ClusterFeature Modifier and Type Method Description double
BetulaClusterModel. estimateLogDensity(ClusterFeature cf)
Estimate the log likelihood of a clustering feature.double
DiagonalGaussianModel. estimateLogDensity(ClusterFeature cf)
double
MultivariateGaussianModel. estimateLogDensity(ClusterFeature cf)
double
SphericalGaussianModel. estimateLogDensity(ClusterFeature cf)
void
BetulaClusterModel. updateE(ClusterFeature cf, double prob)
Process one clustering feature in the E step.void
DiagonalGaussianModel. updateE(ClusterFeature cf, double wei)
void
MultivariateGaussianModel. updateE(ClusterFeature cf, double wei)
void
SphericalGaussianModel. updateE(ClusterFeature cf, double wei)
Method parameters in elki.clustering.em.models with type arguments of type ClusterFeature Modifier and Type Method Description java.util.List<M>
BetulaClusterModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree)
Build the initial models.java.util.List<DiagonalGaussianModel>
BetulaDiagonalGaussianModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree)
java.util.List<MultivariateGaussianModel>
BetulaMultivariateGaussianModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree)
java.util.List<SphericalGaussianModel>
BetulaSphericalGaussianModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree)
-
Uses of ClusterFeature in elki.clustering.kmeans
Method parameters in elki.clustering.kmeans with type arguments of type ClusterFeature Modifier and Type Method Description private int
BetulaLloydKMeans. assignToNearestCluster(int[] assignment, double[][] means, java.util.ArrayList<? extends ClusterFeature> cfs, int[] weights)
Assign each element to nearest cluster.protected double[]
BetulaLloydKMeans. calculateVariances(int[] assignment, double[][] means, java.util.ArrayList<? extends ClusterFeature> cfs, int[] weights)
Calculate variance of clusters based on clustering features.private double[][]
BetulaLloydKMeans. kmeans(java.util.ArrayList<? extends ClusterFeature> cfs, int[] assignment, int[] weights, CFTree<?> tree)
Perform k-means clustering.private double[][]
BetulaLloydKMeans. means(int[] assignment, double[][] means, java.util.ArrayList<? extends ClusterFeature> cfs, int[] weights)
Calculate means of clusters. -
Uses of ClusterFeature in elki.clustering.kmeans.initialization.betula
Methods in elki.clustering.kmeans.initialization.betula that return ClusterFeature Modifier and Type Method Description private ClusterFeature
CFKPlusPlusLeaves. sampleFirst(ClusterFeature root, java.util.List<? extends AsClusterFeature> cfs, java.util.Random rnd)
Sample the first cluster center.Methods in elki.clustering.kmeans.initialization.betula with parameters of type ClusterFeature Modifier and Type Method Description private double
CFKPlusPlusLeaves. initialWeights(ClusterFeature first, java.util.List<? extends AsClusterFeature> cfs, double[] weights)
Initialize the weight list.private ClusterFeature
CFKPlusPlusLeaves. sampleFirst(ClusterFeature root, java.util.List<? extends AsClusterFeature> cfs, java.util.Random rnd)
Sample the first cluster center.double
CFInitWeight. squaredWeight(ClusterFeature exist, ClusterFeature cand)
Distance between two clustering features.double
InterclusterWeight. squaredWeight(ClusterFeature existing, ClusterFeature candidate)
double
SquaredEuclideanWeight. squaredWeight(ClusterFeature c1, ClusterFeature c2)
double
VarianceWeight. squaredWeight(ClusterFeature existing, ClusterFeature candidate)
private double
CFKPlusPlusLeaves. updateWeights(ClusterFeature latest, java.util.List<? extends AsClusterFeature> cfs, double[] weights)
Update the weight list.Method parameters in elki.clustering.kmeans.initialization.betula with type arguments of type ClusterFeature Modifier and Type Method Description abstract double[][]
AbstractCFKMeansInitialization. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
Build the initial models.double[][]
CFKPlusPlusLeaves. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
double[][]
CFKPlusPlusTree. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
double[][]
CFKPlusPlusTrunk. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
double[][]
CFRandomlyChosen. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
double[][]
CFWeightedRandomlyChosen. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
private AsClusterFeature
CFKPlusPlusTree. chooseNextNode(CFNode<?> current, java.util.List<? extends ClusterFeature> ccs, java.util.Random rnd)
Choose a child of the current node.double[][]
CFKPlusPlusLeaves. run(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
Perform k-means++ initialization. -
Uses of ClusterFeature in elki.index.tree.betula
Classes in elki.index.tree.betula with type parameters of type ClusterFeature Modifier and Type Class Description class
CFNode<L extends ClusterFeature>
Interface for TreeNodeclass
CFTree<L extends ClusterFeature>
Partial implementation of the CFTree as used by BIRCH and BETULA.static class
CFTree.Factory<L extends ClusterFeature>
CF-Tree Factory.static class
CFTree.Factory.Par<L extends ClusterFeature>
Parameterization class for CFTrees.static class
CFTree.LeafIterator<L extends ClusterFeature>
Iterator over leaf nodes.Fields in elki.index.tree.betula declared as ClusterFeature Modifier and Type Field Description private L
CFNode. cf
Cluster feature(package private) ClusterFeature[]
CFDistanceMatrix. cfs
Cluster featuresprivate L
CFTree.LeafIterator. current
Current leaf entry.Fields in elki.index.tree.betula with type parameters of type ClusterFeature Modifier and Type Field Description (package private) java.util.Map<ClusterFeature,ArrayModifiableDBIDs>
CFTree. idmap
Stored leaf entry to dbid relationMethods in elki.index.tree.betula with parameters of type ClusterFeature Modifier and Type Method Description DBIDs
CFTree. getDBIDs(ClusterFeature cf)
Get the DBIDs of a cluster feature (if stored).protected static java.lang.StringBuilder
CFTree. printDebug(java.lang.StringBuilder buf, ClusterFeature n, int d)
Utility function for debugging.private double
CFTree. sqabsorption(NumberVector nv, ClusterFeature cf)
Updates statistics and calculates distance between a Number Vector and a Cluster Feature based on selected criteria.private double
CFTree. sqabsorption(ClusterFeature cf1, ClusterFeature cf2)
Updates statistics and calculates distance between two Cluster Features based on selected criteria.private double
CFTree. sqdistance(NumberVector nv, ClusterFeature cf)
Updates statistics and calculates distance between a Number Vector and a Cluster Feature based on selected criteria.private double
CFTree. sqdistance(ClusterFeature cf1, ClusterFeature cf2)
Updates statistics and calculates distance between two Cluster Features based on selected criteria.Constructors in elki.index.tree.betula with parameters of type ClusterFeature Constructor Description CFDistanceMatrix(ClusterFeature[] cfs)
Constructor. -
Uses of ClusterFeature in elki.index.tree.betula.distance
Methods in elki.index.tree.betula.distance with parameters of type ClusterFeature Modifier and Type Method Description double
AverageIntraclusterDistance. matSelfInit(ClusterFeature cf)
default double
CFDistance. matSelfInit(ClusterFeature cf)
Initialization for self measure for new Combinatorial clustering Methods (Podani 1989)double
RadiusDistance. matSelfInit(ClusterFeature cf)
double
AverageInterclusterDistance. squaredDistance(NumberVector nv, ClusterFeature cf)
double
AverageInterclusterDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
double
AverageIntraclusterDistance. squaredDistance(NumberVector nv, ClusterFeature cf1)
double
AverageIntraclusterDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
double
BIRCHAverageInterclusterDistance. squaredDistance(NumberVector v, ClusterFeature ocf)
double
BIRCHAverageInterclusterDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)
double
BIRCHAverageIntraclusterDistance. squaredDistance(NumberVector v, ClusterFeature ocf)
double
BIRCHAverageIntraclusterDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)
double
BIRCHRadiusDistance. squaredDistance(NumberVector n, ClusterFeature ocf)
double
BIRCHRadiusDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)
double
BIRCHVarianceIncreaseDistance. squaredDistance(NumberVector v, ClusterFeature ocf)
double
BIRCHVarianceIncreaseDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)
double
CentroidEuclideanDistance. squaredDistance(NumberVector v, ClusterFeature cf)
double
CentroidEuclideanDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
double
CentroidManhattanDistance. squaredDistance(NumberVector v, ClusterFeature cf)
double
CentroidManhattanDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
double
CFDistance. squaredDistance(NumberVector v, ClusterFeature cf)
Distance of a vector to a clustering feature.double
CFDistance. squaredDistance(ClusterFeature c1, ClusterFeature c2)
Distance between two clustering features.double
RadiusDistance. squaredDistance(NumberVector nv, ClusterFeature cf1)
double
RadiusDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
double
VarianceIncreaseDistance. squaredDistance(NumberVector nv, ClusterFeature cf)
double
VarianceIncreaseDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)
-
Uses of ClusterFeature in elki.index.tree.betula.features
Classes in elki.index.tree.betula.features with type parameters of type ClusterFeature Modifier and Type Interface Description static interface
ClusterFeature.Factory<F extends ClusterFeature>
Cluster feature factoryClasses in elki.index.tree.betula.features that implement ClusterFeature Modifier and Type Class Description class
BIRCHCF
Clustering Feature of BIRCH, only for comparisonclass
VIIFeature
Clustering Feature of stable BIRCH with a single variance per cluster featureclass
VVIFeature
Clustering Feature of stable BIRCH with variance per dimensionclass
VVVFeature
Clustering Feature of stable BIRCH with covariance instead of varianceMethods in elki.index.tree.betula.features that return ClusterFeature Modifier and Type Method Description ClusterFeature
AsClusterFeature. getCF()
Get as clustering feature.default ClusterFeature
ClusterFeature. getCF()
Methods in elki.index.tree.betula.features with parameters of type ClusterFeature Modifier and Type Method Description void
BIRCHCF. addToStatistics(ClusterFeature other)
void
ClusterFeature. addToStatistics(ClusterFeature other)
Add other CF to CFvoid
VIIFeature. addToStatistics(ClusterFeature other)
void
VVIFeature. addToStatistics(ClusterFeature other)
void
VVVFeature. addToStatistics(ClusterFeature other)
-