Uses of Interface
elki.index.tree.betula.features.ClusterFeature
-
Packages that use ClusterFeature Package Description elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.em.models elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization.betula Initialization methods for BIRCH-based k-means and EM clustering.elki.index.tree.betula BETULA clustering by aggregating the data into cluster features.elki.index.tree.betula.distance Distance functions for BETULA and BIRCH.elki.index.tree.betula.features Different variants of Betula and BIRCH cluster features. -
-
Uses of ClusterFeature in elki.clustering.em
Method parameters in elki.clustering.em with type arguments of type ClusterFeature Modifier and Type Method Description doubleBetulaGMM. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.doubleBetulaGMM. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.doubleBetulaGMMWeighted. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)doubleBetulaGMMWeighted. assignProbabilitiesToInstances(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.List<? extends BetulaClusterModel> models, java.util.Map<ClusterFeature,double[]> probClusterIGivenX)voidBetulaGMM. recomputeCovarianceMatrices(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.Map<ClusterFeature,double[]> probClusterIGivenX, java.util.List<? extends BetulaClusterModel> models, double prior, int n)Recompute the covariance matrixes.voidBetulaGMM. recomputeCovarianceMatrices(java.util.ArrayList<? extends ClusterFeature> cfs, java.util.Map<ClusterFeature,double[]> probClusterIGivenX, java.util.List<? extends BetulaClusterModel> models, double prior, int n)Recompute the covariance matrixes. -
Uses of ClusterFeature in elki.clustering.em.models
Methods in elki.clustering.em.models with parameters of type ClusterFeature Modifier and Type Method Description doubleBetulaClusterModel. estimateLogDensity(ClusterFeature cf)Estimate the log likelihood of a clustering feature.doubleDiagonalGaussianModel. estimateLogDensity(ClusterFeature cf)doubleMultivariateGaussianModel. estimateLogDensity(ClusterFeature cf)doubleSphericalGaussianModel. estimateLogDensity(ClusterFeature cf)voidBetulaClusterModel. updateE(ClusterFeature cf, double prob)Process one clustering feature in the E step.voidDiagonalGaussianModel. updateE(ClusterFeature cf, double wei)voidMultivariateGaussianModel. updateE(ClusterFeature cf, double wei)voidSphericalGaussianModel. updateE(ClusterFeature cf, double wei)Method parameters in elki.clustering.em.models with type arguments of type ClusterFeature Modifier and Type Method Description java.util.List<M>BetulaClusterModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree)Build the initial models.java.util.List<DiagonalGaussianModel>BetulaDiagonalGaussianModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree)java.util.List<MultivariateGaussianModel>BetulaMultivariateGaussianModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree)java.util.List<SphericalGaussianModel>BetulaSphericalGaussianModelFactory. buildInitialModels(java.util.List<? extends ClusterFeature> cfs, int k, CFTree<?> tree) -
Uses of ClusterFeature in elki.clustering.kmeans
Method parameters in elki.clustering.kmeans with type arguments of type ClusterFeature Modifier and Type Method Description private intBetulaLloydKMeans. assignToNearestCluster(int[] assignment, double[][] means, java.util.ArrayList<? extends ClusterFeature> cfs, int[] weights)Assign each element to nearest cluster.protected double[]BetulaLloydKMeans. calculateVariances(int[] assignment, double[][] means, java.util.ArrayList<? extends ClusterFeature> cfs, int[] weights)Calculate variance of clusters based on clustering features.private double[][]BetulaLloydKMeans. kmeans(java.util.ArrayList<? extends ClusterFeature> cfs, int[] assignment, int[] weights, CFTree<?> tree)Perform k-means clustering.private double[][]BetulaLloydKMeans. means(int[] assignment, double[][] means, java.util.ArrayList<? extends ClusterFeature> cfs, int[] weights)Calculate means of clusters. -
Uses of ClusterFeature in elki.clustering.kmeans.initialization.betula
Methods in elki.clustering.kmeans.initialization.betula that return ClusterFeature Modifier and Type Method Description private ClusterFeatureCFKPlusPlusLeaves. sampleFirst(ClusterFeature root, java.util.List<? extends AsClusterFeature> cfs, java.util.Random rnd)Sample the first cluster center.Methods in elki.clustering.kmeans.initialization.betula with parameters of type ClusterFeature Modifier and Type Method Description private doubleCFKPlusPlusLeaves. initialWeights(ClusterFeature first, java.util.List<? extends AsClusterFeature> cfs, double[] weights)Initialize the weight list.private ClusterFeatureCFKPlusPlusLeaves. sampleFirst(ClusterFeature root, java.util.List<? extends AsClusterFeature> cfs, java.util.Random rnd)Sample the first cluster center.doubleCFInitWeight. squaredWeight(ClusterFeature exist, ClusterFeature cand)Distance between two clustering features.doubleInterclusterWeight. squaredWeight(ClusterFeature existing, ClusterFeature candidate)doubleSquaredEuclideanWeight. squaredWeight(ClusterFeature c1, ClusterFeature c2)doubleVarianceWeight. squaredWeight(ClusterFeature existing, ClusterFeature candidate)private doubleCFKPlusPlusLeaves. updateWeights(ClusterFeature latest, java.util.List<? extends AsClusterFeature> cfs, double[] weights)Update the weight list.Method parameters in elki.clustering.kmeans.initialization.betula with type arguments of type ClusterFeature Modifier and Type Method Description abstract double[][]AbstractCFKMeansInitialization. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)Build the initial models.double[][]CFKPlusPlusLeaves. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)double[][]CFKPlusPlusTree. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)double[][]CFKPlusPlusTrunk. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)double[][]CFRandomlyChosen. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)double[][]CFWeightedRandomlyChosen. chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)private AsClusterFeatureCFKPlusPlusTree. chooseNextNode(CFNode<?> current, java.util.List<? extends ClusterFeature> ccs, java.util.Random rnd)Choose a child of the current node.double[][]CFKPlusPlusLeaves. run(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)Perform k-means++ initialization. -
Uses of ClusterFeature in elki.index.tree.betula
Classes in elki.index.tree.betula with type parameters of type ClusterFeature Modifier and Type Class Description classCFNode<L extends ClusterFeature>Interface for TreeNodeclassCFTree<L extends ClusterFeature>Partial implementation of the CFTree as used by BIRCH and BETULA.static classCFTree.Factory<L extends ClusterFeature>CF-Tree Factory.static classCFTree.Factory.Par<L extends ClusterFeature>Parameterization class for CFTrees.static classCFTree.LeafIterator<L extends ClusterFeature>Iterator over leaf nodes.Fields in elki.index.tree.betula declared as ClusterFeature Modifier and Type Field Description private LCFNode. cfCluster feature(package private) ClusterFeature[]CFDistanceMatrix. cfsCluster featuresprivate LCFTree.LeafIterator. currentCurrent leaf entry.Fields in elki.index.tree.betula with type parameters of type ClusterFeature Modifier and Type Field Description (package private) java.util.Map<ClusterFeature,ArrayModifiableDBIDs>CFTree. idmapStored leaf entry to dbid relationMethods in elki.index.tree.betula with parameters of type ClusterFeature Modifier and Type Method Description DBIDsCFTree. getDBIDs(ClusterFeature cf)Get the DBIDs of a cluster feature (if stored).protected static java.lang.StringBuilderCFTree. printDebug(java.lang.StringBuilder buf, ClusterFeature n, int d)Utility function for debugging.private doubleCFTree. sqabsorption(NumberVector nv, ClusterFeature cf)Updates statistics and calculates distance between a Number Vector and a Cluster Feature based on selected criteria.private doubleCFTree. sqabsorption(ClusterFeature cf1, ClusterFeature cf2)Updates statistics and calculates distance between two Cluster Features based on selected criteria.private doubleCFTree. sqdistance(NumberVector nv, ClusterFeature cf)Updates statistics and calculates distance between a Number Vector and a Cluster Feature based on selected criteria.private doubleCFTree. sqdistance(ClusterFeature cf1, ClusterFeature cf2)Updates statistics and calculates distance between two Cluster Features based on selected criteria.Constructors in elki.index.tree.betula with parameters of type ClusterFeature Constructor Description CFDistanceMatrix(ClusterFeature[] cfs)Constructor. -
Uses of ClusterFeature in elki.index.tree.betula.distance
Methods in elki.index.tree.betula.distance with parameters of type ClusterFeature Modifier and Type Method Description doubleAverageIntraclusterDistance. matSelfInit(ClusterFeature cf)default doubleCFDistance. matSelfInit(ClusterFeature cf)Initialization for self measure for new Combinatorial clustering Methods (Podani 1989)doubleRadiusDistance. matSelfInit(ClusterFeature cf)doubleAverageInterclusterDistance. squaredDistance(NumberVector nv, ClusterFeature cf)doubleAverageInterclusterDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)doubleAverageIntraclusterDistance. squaredDistance(NumberVector nv, ClusterFeature cf1)doubleAverageIntraclusterDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)doubleBIRCHAverageInterclusterDistance. squaredDistance(NumberVector v, ClusterFeature ocf)doubleBIRCHAverageInterclusterDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)doubleBIRCHAverageIntraclusterDistance. squaredDistance(NumberVector v, ClusterFeature ocf)doubleBIRCHAverageIntraclusterDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)doubleBIRCHRadiusDistance. squaredDistance(NumberVector n, ClusterFeature ocf)doubleBIRCHRadiusDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)doubleBIRCHVarianceIncreaseDistance. squaredDistance(NumberVector v, ClusterFeature ocf)doubleBIRCHVarianceIncreaseDistance. squaredDistance(ClusterFeature ocf1, ClusterFeature ocf2)doubleCentroidEuclideanDistance. squaredDistance(NumberVector v, ClusterFeature cf)doubleCentroidEuclideanDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)doubleCentroidManhattanDistance. squaredDistance(NumberVector v, ClusterFeature cf)doubleCentroidManhattanDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)doubleCFDistance. squaredDistance(NumberVector v, ClusterFeature cf)Distance of a vector to a clustering feature.doubleCFDistance. squaredDistance(ClusterFeature c1, ClusterFeature c2)Distance between two clustering features.doubleRadiusDistance. squaredDistance(NumberVector nv, ClusterFeature cf1)doubleRadiusDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2)doubleVarianceIncreaseDistance. squaredDistance(NumberVector nv, ClusterFeature cf)doubleVarianceIncreaseDistance. squaredDistance(ClusterFeature cf1, ClusterFeature cf2) -
Uses of ClusterFeature in elki.index.tree.betula.features
Classes in elki.index.tree.betula.features with type parameters of type ClusterFeature Modifier and Type Interface Description static interfaceClusterFeature.Factory<F extends ClusterFeature>Cluster feature factoryClasses in elki.index.tree.betula.features that implement ClusterFeature Modifier and Type Class Description classBIRCHCFClustering Feature of BIRCH, only for comparisonclassVIIFeatureClustering Feature of stable BIRCH with a single variance per cluster featureclassVVIFeatureClustering Feature of stable BIRCH with variance per dimensionclassVVVFeatureClustering Feature of stable BIRCH with covariance instead of varianceMethods in elki.index.tree.betula.features that return ClusterFeature Modifier and Type Method Description ClusterFeatureAsClusterFeature. getCF()Get as clustering feature.default ClusterFeatureClusterFeature. getCF()Methods in elki.index.tree.betula.features with parameters of type ClusterFeature Modifier and Type Method Description voidBIRCHCF. addToStatistics(ClusterFeature other)voidClusterFeature. addToStatistics(ClusterFeature other)Add other CF to CFvoidVIIFeature. addToStatistics(ClusterFeature other)voidVVIFeature. addToStatistics(ClusterFeature other)voidVVVFeature. addToStatistics(ClusterFeature other)
-