Uses of Class
elki.data.Clustering
-
Packages that use Clustering Package Description elki.clustering Clustering algorithms.elki.clustering.affinitypropagation Affinity Propagation (AP) clustering.elki.clustering.biclustering Biclustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.dbscan.parallel Parallel versions of Generalized DBSCAN.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.hierarchical.birch BIRCH clustering.elki.clustering.hierarchical.extraction Extraction of partitional clusterings from hierarchical results.elki.clustering.kcenter K-center clustering.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.meta Meta clustering algorithms, that get their result from other clusterings or external sources.elki.clustering.onedimensional Clustering algorithms for one-dimensional data.elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.silhouette Silhouette clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.svm elki.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings.elki.clustering.uncertain Clustering algorithms for uncertain data.elki.data Basic classes for different data types, database object types and label types.elki.datasource.parser Parsers for different file formats and data types.elki.evaluation.clustering Evaluation of clustering results.elki.evaluation.clustering.internal Internal evaluation measures for clusterings.elki.evaluation.clustering.pairsegments Pair-segment analysis of multiple clusterings.elki.evaluation.outlier Evaluate an outlier score using a misclassification based cost model.elki.outlier.clustering Clustering based outlier detection.elki.result Result types, representation and handling.elki.result.textwriter Text serialization (CSV, Gnuplot, Console, ...).elki.result.textwriter.naming Naming schemes for clusters (for output when an algorithm does not generate cluster names).elki.similarity.cluster Similarity measures for comparing clusters.elki.visualization Visualization package of ELKI.elki.visualization.opticsplot Code for drawing OPTICS plots.elki.visualization.projections Visualization projections.elki.visualization.projector Projectors are responsible for finding appropriate projections for data relations.elki.visualization.style Style management for ELKI visualizations.elki.visualization.visualizers.actions Action-only "visualizers" that only produce menu entries.elki.visualization.visualizers.optics Visualizers that do work on OPTICS plots.elki.visualization.visualizers.visunproj Visualizers that do not use a particular projection.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation. -
-
Uses of Clustering in elki.clustering
Classes in elki.clustering with type parameters of type Clustering Modifier and Type Class Description class
AbstractProjectedClustering<R extends Clustering<?>>
interface
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide aClustering
as Result. in general, clustering algorithms are supposed to implement theAlgorithm
-Interface.Methods in elki.clustering that return Clustering Modifier and Type Method Description Clustering<MeanModel>
BetulaLeafPreClustering. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<PrototypeModel<O>>
CanopyPreClustering. run(Relation<O> relation)
Run the canopy clustering algorithmClustering<SimplePrototypeModel<DBID>>
CFSFDP. run(Relation<O> relation)
Perform CFSFDP clustering.Clustering<PrototypeModel<O>>
Leader. run(Relation<O> relation)
Run the leader clustering algorithm.Clustering<MeanModel>
NaiveMeanShiftClustering. run(Relation<V> relation)
Run the mean-shift clustering algorithm.Clustering<Model>
SNNClustering. run(Relation<O> relation)
Perform SNN clustering -
Uses of Clustering in elki.clustering.affinitypropagation
Methods in elki.clustering.affinitypropagation that return Clustering Modifier and Type Method Description private Clustering<MedoidModel>
AffinityPropagation. buildResult(ArrayDBIDs ids, int[] assignment)
Build the clustering result.Clustering<MedoidModel>
AffinityPropagation. run(Relation<O> relation)
Perform affinity propagation clustering. -
Uses of Clustering in elki.clustering.biclustering
Methods in elki.clustering.biclustering that return Clustering Modifier and Type Method Description protected abstract Clustering<M>
AbstractBiclustering. biclustering()
Run the actual biclustering algorithm.Clustering<BiclusterWithInversionsModel>
ChengAndChurch. biclustering()
Clustering<M>
AbstractBiclustering. run(Relation<? extends NumberVector> relation)
Prepares the algorithm for running on a specific database. -
Uses of Clustering in elki.clustering.correlation
Methods in elki.clustering.correlation that return Clustering Modifier and Type Method Description private Clustering<Model>
CASH. doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.Clustering<Model>
CASH. run(Relation<? extends NumberVector> rel)
Run CASH on the relation.Clustering<DimensionModel>
COPAC. run(Database database, Relation<? extends NumberVector> relation)
Run the COPAC algorithm.Clustering<CorrelationModel>
ERiC. run(Database database, Relation<? extends NumberVector> relation)
Performs the ERiC algorithm on the given database.Clustering<Model>
LMCLUS. run(Relation<? extends NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this method.Clustering<Model>
ORCLUS. run(Relation<? extends NumberVector> relation)
Performs the ORCLUS algorithm on the given database.Methods in elki.clustering.correlation with parameters of type Clustering Modifier and Type Method Description private void
ERiC. buildHierarchy(Clustering<CorrelationModel> clustering, java.util.List<java.util.List<Cluster<CorrelationModel>>> clusterMap, ERiCNeighborPredicate.Instance npred)
private java.util.List<java.util.List<Cluster<CorrelationModel>>>
ERiC. extractCorrelationClusters(Clustering<Model> dbscanResult, Relation<? extends NumberVector> relation, int dimensionality, ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. -
Uses of Clustering in elki.clustering.dbscan
Methods in elki.clustering.dbscan that return Clustering Modifier and Type Method Description Clustering<Model>
GeneralizedDBSCAN. autorun(Database database)
protected Clustering<Model>
GriDBSCAN.Instance. buildResult(DBIDs ids, int clusterid)
Assemble the clustering result.Clustering<Model>
DBSCAN. run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
GeneralizedDBSCAN.Instance. run()
Run the actual GDBSCAN algorithm.Clustering<Model>
GriDBSCAN.Instance. run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
GriDBSCAN. run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
LSDBC. run(Relation<O> relation)
Run the LSDBC algorithm -
Uses of Clustering in elki.clustering.dbscan.parallel
Methods in elki.clustering.dbscan.parallel that return Clustering Modifier and Type Method Description Clustering<Model>
ParallelGeneralizedDBSCAN. autorun(Database database)
Clustering<Model>
ParallelGeneralizedDBSCAN.Instance. run()
Run the parallel GDBSCAN algorithm. -
Uses of Clustering in elki.clustering.em
Methods in elki.clustering.em that return Clustering Modifier and Type Method Description Clustering<EMModel>
BetulaGMM. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<M>
EM. run(Relation<O> relation)
Performs the EM clustering algorithm on the given database.Clustering<EMModel>
KDTreeEM. run(Relation<? extends NumberVector> relation)
Calculates the EM Clustering with the given values by calling makeStats and calculation the new models from the given results -
Uses of Clustering in elki.clustering.hierarchical.birch
Methods in elki.clustering.hierarchical.birch that return Clustering Modifier and Type Method Description Clustering<MeanModel>
BIRCHLeafClustering. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<KMeansModel>
BIRCHLloydKMeans. run(Relation<NumberVector> relation)
Run the clustering algorithm. -
Uses of Clustering in elki.clustering.hierarchical.extraction
Methods in elki.clustering.hierarchical.extraction that return Clustering Modifier and Type Method Description Clustering<Model>
ClustersWithNoiseExtraction. autorun(Database database)
Clustering<DendrogramModel>
HDBSCANHierarchyExtraction. autorun(Database database)
Clustering<DendrogramModel>
SimplifiedHierarchyExtraction. autorun(Database database)
private Clustering<DendrogramModel>
AbstractCutDendrogram.Instance. buildFlat(int split, FiniteProgress progress)
Build a flat clustering.private Clustering<DendrogramModel>
AbstractCutDendrogram.Instance. buildHierarchical(int split, FiniteProgress progress)
Build a hierarchical clustering.Clustering<DendrogramModel>
AbstractCutDendrogram.Instance. extractClusters()
Extract all clusters from the pi-lambda-representation.abstract Clustering<DendrogramModel>
AbstractCutDendrogram. run(ClusterMergeHistory pointerresult)
Process a pointer hierarchy result.Clustering<DendrogramModel>
AbstractCutDendrogram. run(Database database)
Run the algorithms on a database.Clustering<Model>
ClustersWithNoiseExtraction.Instance. run()
Extract all clusters from the pi-lambda-representation.Clustering<Model>
ClustersWithNoiseExtraction. run(ClusterMergeHistory merges)
Process an existing result.Clustering<DendrogramModel>
CutDendrogramByHeight. run(ClusterMergeHistory merges)
Clustering<DendrogramModel>
CutDendrogramByNumberOfClusters. run(ClusterMergeHistory merges)
Clustering<DendrogramModel>
HDBSCANHierarchyExtraction.Instance. run()
Extract all clusters from the pi-lambda-representation.Clustering<DendrogramModel>
HDBSCANHierarchyExtraction. run(ClusterMergeHistory merges)
Process an existing result.Clustering<DendrogramModel>
SimplifiedHierarchyExtraction.Instance. run()
Extract all clusters from the pi-lambda-representation.Clustering<DendrogramModel>
SimplifiedHierarchyExtraction. run(ClusterMergeHistory merges)
Process an existing result.Methods in elki.clustering.hierarchical.extraction with parameters of type Clustering Modifier and Type Method Description private double
HDBSCANHierarchyExtraction.Instance. collectChildren(HDBSCANHierarchyExtraction.TempCluster temp, Clustering<DendrogramModel> clustering, WritableDoubleDataStore glosh, HDBSCANHierarchyExtraction.TempCluster cur, Cluster<DendrogramModel> clus, boolean flatten)
Recursive flattening of clusters.private double
HDBSCANHierarchyExtraction.Instance. finalizeCluster(HDBSCANHierarchyExtraction.TempCluster temp, Clustering<DendrogramModel> clustering, WritableDoubleDataStore glosh, Cluster<DendrogramModel> parent, boolean flatten)
Make the cluster for the given objectprotected Cluster<DendrogramModel>
SimplifiedHierarchyExtraction.Instance. toCluster(SimplifiedHierarchyExtraction.TempCluster temp, Clustering<DendrogramModel> clustering)
Make the cluster for the given object -
Uses of Clustering in elki.clustering.kcenter
Methods in elki.clustering.kcenter that return Clustering Modifier and Type Method Description Clustering<SimplePrototypeModel<O>>
GreedyKCenter. run(Relation<O> relation)
Perform greedy k-center clustering on the relation. -
Uses of Clustering in elki.clustering.kmeans
Methods in elki.clustering.kmeans that return Clustering Modifier and Type Method Description protected Clustering<MeanModel>
KMediansLloyd.Instance. buildMediansResult()
Clustering<KMeansModel>
AbstractKMeans.Instance. buildResult()
Build a standard k-means result, with known cluster variance sums.Clustering<KMeansModel>
AbstractKMeans.Instance. buildResult(boolean varstat, Relation<? extends NumberVector> relation)
Build the result, recomputing the cluster variance ifvarstat
is set to true.protected Clustering<KMeansModel>
KMeansMinusMinus.Instance. buildResultWithNoise()
Clustering<KMeansModel>
AnnulusKMeans. run(Relation<V> relation)
Clustering<M>
BestOfMultipleKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
BetulaLloydKMeans. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<M>
BisectingKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
CompareMeans. run(Relation<V> relation)
Clustering<KMeansModel>
ElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
ExponionKMeans. run(Relation<V> relation)
Clustering<MeanModel>
FuzzyCMeans. run(Relation<V> relation)
Runs Fuzzy C Means clustering on the given RelationClustering<KMeansModel>
HamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
HartiganWongKMeans. run(Relation<V> rel)
Clustering<KMeansModel>
KDTreeFilteringKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
KDTreePruningKMeans. run(Relation<V> relation)
Clustering<M>
KMeans. run(Relation<V> rel)
Run the clustering algorithm.Clustering<KMeansModel>
KMeansMinusMinus. run(Relation<V> relation)
Clustering<MeanModel>
KMediansLloyd. run(Relation<V> relation)
Clustering<KMeansModel>
LloydKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
MacQueenKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
ShallotKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SimplifiedElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SingleAssignmentKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SortMeans. run(Relation<V> relation)
Clustering<M>
XMeans. run(Relation<V> relation)
Run the algorithm on a database and relation.Clustering<KMeansModel>
YinYangKMeans. run(Relation<V> rel)
-
Uses of Clustering in elki.clustering.kmeans.parallel
Methods in elki.clustering.kmeans.parallel that return Clustering Modifier and Type Method Description Clustering<KMeansModel>
ParallelLloydKMeans. run(Relation<V> relation)
-
Uses of Clustering in elki.clustering.kmeans.quality
Methods in elki.clustering.kmeans.quality with parameters of type Clustering Modifier and Type Method Description static double
AbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionXMeans. logLikelihoodXMeans(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionZhao. logLikelihoodZhao(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static int
AbstractKMeansQualityMeasure. numberOfFreeParameters(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering)
Compute the number of free parameters.static int
AbstractKMeansQualityMeasure. numPoints(Clustering<? extends MeanModel> clustering)
Compute the number of points in a given set of clusters (which may be less than the complete data set for X-means!)<V extends NumberVector>
doubleAkaikeInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleAkaikeInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionZhao. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends O>
doubleKMeansQualityMeasure. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
Calculates and returns the quality measure.<V extends NumberVector>
doubleWithinClusterMeanDistance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleWithinClusterVariance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
-
Uses of Clustering in elki.clustering.kmeans.spherical
Methods in elki.clustering.kmeans.spherical that return Clustering Modifier and Type Method Description Clustering<KMeansModel>
EuclideanSphericalElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
EuclideanSphericalHamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
EuclideanSphericalSimplifiedElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalHamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalSimplifiedElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalSimplifiedHamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalSingleAssignmentKMeans. run(Relation<V> relation)
-
Uses of Clustering in elki.clustering.kmedoids
Methods in elki.clustering.kmedoids that return Clustering Modifier and Type Method Description Clustering<MedoidModel>
AlternatingKMedoids. run(Relation<O> relation)
Clustering<MedoidModel>
AlternatingKMedoids. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
CLARA. run(Relation<V> relation)
Clustering<MedoidModel>
CLARA. run(Relation<V> relation, int k, DistanceQuery<? super V> distQ)
Clustering<MedoidModel>
CLARANS. run(Relation<O> relation)
Run CLARANS clustering.Clustering<MedoidModel>
CLARANS. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
EagerPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastCLARA. run(Relation<V> relation)
Clustering<MedoidModel>
FastCLARA. run(Relation<V> relation, int k, DistanceQuery<? super V> distQ)
Clustering<MedoidModel>
FastCLARANS. run(Relation<V> relation)
Clustering<MedoidModel>
FasterCLARA. run(Relation<O> relation)
Clustering<MedoidModel>
FasterCLARA. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FasterPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastPAM1. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
KMedoidsClustering. run(Relation<O> relation)
Run k-medoids clustering.Clustering<MedoidModel>
KMedoidsClustering. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Run k-medoids clustering with a given distance query.
Not a very elegant API, but needed for some types of nested k-medoids.Clustering<MedoidModel>
PAM. run(Relation<O> relation)
Clustering<MedoidModel>
PAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
ReynoldsPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
SingleAssignmentKMedoids. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
protected static Clustering<MedoidModel>
PAM. wrapResult(DBIDs ids, WritableIntegerDataStore assignment, ArrayModifiableDBIDs medoids, java.lang.String name)
Wrap the clustering result. -
Uses of Clustering in elki.clustering.meta
Methods in elki.clustering.meta that return Clustering Modifier and Type Method Description Clustering<? extends Model>
ExternalClustering. autorun(Database database)
Run the algorithm. -
Uses of Clustering in elki.clustering.onedimensional
Methods in elki.clustering.onedimensional that return Clustering Modifier and Type Method Description Clustering<ClusterModel>
KNNKernelDensityMinimaClustering. run(Relation<? extends NumberVector> relation)
Run the clustering algorithm on a data relation. -
Uses of Clustering in elki.clustering.optics
Fields in elki.clustering.optics declared as Clustering Modifier and Type Field Description (package private) Clustering<OPTICSModel>
OPTICSXi.ClusterHierarchyBuilder. clustering
ELKI clustering objectMethods in elki.clustering.optics that return Clustering Modifier and Type Method Description Clustering<OPTICSModel>
OPTICSXi. autorun(Database database)
private Clustering<OPTICSModel>
OPTICSXi.ClusterHierarchyBuilder. build(ClusterOrder clusterOrder, DBIDArrayIter iter)
Build the main clustering result.private Clustering<OPTICSModel>
OPTICSXi. extractClusters(ClusterOrder clusterOrderResult, double ixi, int minpts)
Extract clusters from a cluster order result.Clustering<OPTICSModel>
OPTICSXi. run(ClusterOrder clusterOrder)
Process the cluster order of an OPTICS clustering. -
Uses of Clustering in elki.clustering.silhouette
Methods in elki.clustering.silhouette that return Clustering Modifier and Type Method Description Clustering<MedoidModel>
FasterMSC. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastMSC. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
PAMMEDSIL. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
PAMSIL. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
-
Uses of Clustering in elki.clustering.subspace
Methods in elki.clustering.subspace that return Clustering Modifier and Type Method Description private Clustering<SubspaceModel>
DiSH. computeClusters(Relation<? extends NumberVector> database, DiSH.DiSHClusterOrder clusterOrder)
Computes the hierarchical clusters according to the cluster order.Clustering<SubspaceModel>
CLIQUE. run(Relation<? extends NumberVector> relation)
Performs the CLIQUE algorithm on the given database.Clustering<SubspaceModel>
DiSH. run(Relation<? extends NumberVector> relation)
Performs the DiSH algorithm on the given database.Clustering<SubspaceModel>
DOC. run(Relation<? extends NumberVector> relation)
Performs the DOC or FastDOC (as configured) algorithm.Clustering<SubspaceModel>
P3C. run(Relation<? extends NumberVector> relation)
Performs the P3C algorithm on the given Database.<V extends NumberVector>
Clustering<SubspaceModel>PROCLUS. run(Relation<V> relation)
Performs the PROCLUS algorithm on the given database.Clustering<SubspaceModel>
SUBCLU. run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database.Methods in elki.clustering.subspace with parameters of type Clustering Modifier and Type Method Description private void
DiSH. buildHierarchy(Relation<? extends NumberVector> database, Clustering<SubspaceModel> clustering, java.util.List<Cluster<SubspaceModel>> clusters, int dimensionality)
Builds the cluster hierarchy. -
Uses of Clustering in elki.clustering.svm
Methods in elki.clustering.svm that return Clustering Modifier and Type Method Description Clustering<Model>
SupportVectorClustering. run(Relation<NumberVector> relation)
perform clustering -
Uses of Clustering in elki.clustering.trivial
Subclasses of Clustering in elki.clustering.trivial Modifier and Type Class Description class
ReferenceClustering<M extends Model>
Reference clustering.Methods in elki.clustering.trivial that return Clustering Modifier and Type Method Description Clustering<Model>
ByLabelClustering. autorun(Database database)
Clustering<Model>
ByLabelHierarchicalClustering. autorun(Database database)
Clustering<Model>
ByLabelOrAllInOneClustering. autorun(Database database)
Clustering<Model>
ByLabelClustering. run(Relation<?> relation)
Run the actual clustering algorithm.Clustering<Model>
ByLabelHierarchicalClustering. run(Relation<?> relation)
Run the actual clustering algorithm.Clustering<Model>
ByModelClustering. run(Relation<Model> relation)
Run the actual clustering algorithm.Clustering<Model>
TrivialAllInOne. run(Relation<?> relation)
Perform trivial clustering.Clustering<Model>
TrivialAllNoise. run(Relation<?> relation)
Run the trivial clustering algorithm. -
Uses of Clustering in elki.clustering.uncertain
Classes in elki.clustering.uncertain with type parameters of type Clustering Modifier and Type Class Description class
CenterOfMassMetaClustering<C extends Clustering<?>>
Center-of-mass meta clustering reduces uncertain objects to their center of mass, then runs a vector-oriented clustering algorithm on this data set.static class
CenterOfMassMetaClustering.Par<C extends Clustering<?>>
Parameterization class.Methods in elki.clustering.uncertain that return Clustering Modifier and Type Method Description Clustering<?>
RepresentativeUncertainClustering. run(Database database, Relation<? extends UncertainObject> relation)
This run method will do the wrapping.Clustering<KMeansModel>
UKMeans. run(Relation<DiscreteUncertainObject> relation)
Run the clustering.protected Clustering<?>
RepresentativeUncertainClustering. runClusteringAlgorithm(java.lang.Object parent, DBIDs ids, DataStore<DoubleVector> store, int dim, java.lang.String title)
Run a clustering algorithm on a single instance. -
Uses of Clustering in elki.data
Fields in elki.data with type parameters of type Clustering Modifier and Type Field Description static SimpleTypeInformation<Clustering<?>>
Clustering. TYPE
Type information, for relation matching.Methods in elki.data that return types with arguments of type Clustering Modifier and Type Method Description static java.util.List<Clustering<? extends Model>>
Clustering. getClusteringResults(java.lang.Object r)
Collect all clustering results from a Result -
Uses of Clustering in elki.datasource.parser
Fields in elki.datasource.parser declared as Clustering Modifier and Type Field Description (package private) Clustering<Model>
ClusteringVectorParser. curclu
Current clustering. -
Uses of Clustering in elki.evaluation.clustering
Methods in elki.evaluation.clustering with parameters of type Clustering Modifier and Type Method Description protected void
EvaluateClustering. evaluteResult(Database db, Clustering<?> c, Clustering<?> refc)
Evaluate a clustering result.private boolean
EvaluateClustering. isReferenceResult(Clustering<?> t)
Test if a clustering result is a valid reference result.static <C extends Model>
voidLogClusterSizes. logClusterSizes(Clustering<C> c)
Log the cluster sizes of a clustering.Constructors in elki.evaluation.clustering with parameters of type Clustering Constructor Description ClusterContingencyTable(boolean selfPairing, boolean breakNoiseClusters, Clustering<?> result1, Clustering<?> result2)
Constructor. -
Uses of Clustering in elki.evaluation.clustering.internal
Methods in elki.evaluation.clustering.internal with parameters of type Clustering Modifier and Type Method Description double
CIndex. evaluateClustering(Relation<? extends O> rel, DistanceQuery<O> dq, Clustering<?> c)
Evaluate a single clustering.double
ClusterRadius. evaluateClustering(Database db, Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
ConcordantPairsGammaTau. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
DaviesBouldinIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
DBCV. evaluateClustering(Relation<O> relation, Clustering<?> cl)
Evaluate a single clustering.double
PBMIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
Silhouette. evaluateClustering(Relation<O> rel, DistanceQuery<O> dq, Clustering<?> c)
Evaluate a single clustering.double
SimplifiedSilhouette. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
SquaredErrors. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
VarianceRatioCriterion. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering. -
Uses of Clustering in elki.evaluation.clustering.pairsegments
Fields in elki.evaluation.clustering.pairsegments with type parameters of type Clustering Modifier and Type Field Description private java.util.List<Clustering<?>>
Segments. clusterings
ClusteringsConstructor parameters in elki.evaluation.clustering.pairsegments with type arguments of type Clustering Constructor Description Segments(java.util.List<Clustering<?>> clusterings)
Initialize segments. -
Uses of Clustering in elki.evaluation.outlier
Methods in elki.evaluation.outlier that return Clustering Modifier and Type Method Description private Clustering<Model>
OutlierThresholdClustering. split(OutlierResult or)
-
Uses of Clustering in elki.outlier.clustering
Fields in elki.outlier.clustering with type parameters of type Clustering Modifier and Type Field Description protected ClusteringAlgorithm<Clustering<MeanModel>>
CBLOF. clusteringAlgorithm
The clustering algorithm to use.protected ClusteringAlgorithm<Clustering<MeanModel>>
CBLOF.Par. clusteringAlgorithm
The clustering algorithm to use.Methods in elki.outlier.clustering with parameters of type Clustering Modifier and Type Method Description private void
KMeansOutlierDetection. distanceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Simple distance-based scoring function.private void
KMeansOutlierDetection. singletonsScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Distance-based scoring that takes singletons into account.private void
KMeansOutlierDetection. varianceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Variance-based scoring function.Constructor parameters in elki.outlier.clustering with type arguments of type Clustering Constructor Description CBLOF(NumberVectorDistance<? super O> distance, ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm, double alpha, double beta)
Constructor. -
Uses of Clustering in elki.result
Methods in elki.result with parameters of type Clustering Modifier and Type Method Description protected void
ClusteringVectorDumper. dumpClusteringOutput(java.lang.Appendable writer, Clustering<?> c)
Dump a single clustering result.private void
KMLOutputHandler. writeClusteringResult(javax.xml.stream.XMLStreamWriter xmlw, Clustering<Model> clustering, Database database)
-
Uses of Clustering in elki.result.textwriter
Methods in elki.result.textwriter with parameters of type Clustering Modifier and Type Method Description private void
TextWriter. writeClusterResult(Database db, StreamFactory streamOpener, Clustering<Model> clustering, Cluster<Model> clus, java.util.List<Relation<?>> ra, NamingScheme naming)
-
Uses of Clustering in elki.result.textwriter.naming
Fields in elki.result.textwriter.naming declared as Clustering Modifier and Type Field Description private Clustering<?>
SimpleEnumeratingScheme. clustering
Clustering this scheme is applied to.Constructors in elki.result.textwriter.naming with parameters of type Clustering Constructor Description SimpleEnumeratingScheme(Clustering<?> clustering)
Constructor. -
Uses of Clustering in elki.similarity.cluster
Methods in elki.similarity.cluster with type parameters of type Clustering Modifier and Type Method Description <T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringAdjustedRandIndexSimilarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringBCubedF1Similarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringDistanceSimilarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringFowlkesMallowsSimilarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringRandIndexSimilarity. instantiate(Relation<T> relation)
Methods in elki.similarity.cluster that return types with arguments of type Clustering Modifier and Type Method Description SimpleTypeInformation<? super Clustering<?>>
ClusteringAdjustedRandIndexSimilarity. getInputTypeRestriction()
SimpleTypeInformation<? super Clustering<?>>
ClusteringBCubedF1Similarity. getInputTypeRestriction()
SimpleTypeInformation<? super Clustering<?>>
ClusteringFowlkesMallowsSimilarity. getInputTypeRestriction()
SimpleTypeInformation<? super Clustering<?>>
ClusteringRandIndexSimilarity. getInputTypeRestriction()
Methods in elki.similarity.cluster with parameters of type Clustering Modifier and Type Method Description double
ClusteringAdjustedRandIndexSimilarity. distance(Clustering<?> o1, Clustering<?> o2)
double
ClusteringBCubedF1Similarity. distance(Clustering<?> o1, Clustering<?> o2)
double
ClusteringFowlkesMallowsSimilarity. distance(Clustering<?> o1, Clustering<?> o2)
double
ClusteringRandIndexSimilarity. distance(Clustering<?> o1, Clustering<?> o2)
double
ClusteringAdjustedRandIndexSimilarity. similarity(Clustering<?> o1, Clustering<?> o2)
double
ClusteringBCubedF1Similarity. similarity(Clustering<?> o1, Clustering<?> o2)
double
ClusteringFowlkesMallowsSimilarity. similarity(Clustering<?> o1, Clustering<?> o2)
double
ClusteringRandIndexSimilarity. similarity(Clustering<?> o1, Clustering<?> o2)
-
Uses of Clustering in elki.visualization
Methods in elki.visualization that return Clustering Modifier and Type Method Description private Clustering<Model>
VisualizerContext. generateDefaultClustering()
Generate a default (fallback) clustering. -
Uses of Clustering in elki.visualization.opticsplot
Methods in elki.visualization.opticsplot that return Clustering Modifier and Type Method Description static <E extends ClusterOrder>
Clustering<Model>OPTICSCut. makeOPTICSCut(E co, double epsilon)
Compute an OPTICS cut clustering -
Uses of Clustering in elki.visualization.projections
Methods in elki.visualization.projections that return Clustering Modifier and Type Method Description Clustering<?>
SilhouetteProjection. getResult()
Get the underlying Clustering from which the silhouette values are calculated. -
Uses of Clustering in elki.visualization.projector
Fields in elki.visualization.projector declared as Clustering Modifier and Type Field Description private Clustering<?>
SilhouettePlotProjector. clustering
Underlying clusteringMethods in elki.visualization.projector that return Clustering Modifier and Type Method Description Clustering<?>
SilhouettePlotProjector. getResult()
Get the underlying ClusteringMethods in elki.visualization.projector with parameters of type Clustering Modifier and Type Method Description private static DoubleDBIDList[]
SilhouettePlotProjector. sortSilhouette(Clustering<?> c, DoubleRelation dds)
Sort the silhouettes for visualization.Constructors in elki.visualization.projector with parameters of type Clustering Constructor Description SilhouettePlotProjector(Clustering<?> clustering, DoubleRelation dds)
Constructor. -
Uses of Clustering in elki.visualization.style
Fields in elki.visualization.style declared as Clustering Modifier and Type Field Description (package private) Clustering<?>
ClusterStylingPolicy. clustering
Clustering in use.Methods in elki.visualization.style that return Clustering Modifier and Type Method Description Clustering<?>
ClusterStylingPolicy. getClustering()
Get the clustering used by this styling policyConstructors in elki.visualization.style with parameters of type Clustering Constructor Description ClusterStylingPolicy(Clustering<?> clustering, StyleLibrary style)
Constructor. -
Uses of Clustering in elki.visualization.visualizers.actions
Fields in elki.visualization.visualizers.actions declared as Clustering Modifier and Type Field Description private Clustering<?>
ClusterStyleAction.SetStyleAction. c
Clustering to useConstructors in elki.visualization.visualizers.actions with parameters of type Clustering Constructor Description SetStyleAction(Clustering<?> c, VisualizerContext context)
Constructor. -
Uses of Clustering in elki.visualization.visualizers.optics
Fields in elki.visualization.visualizers.optics declared as Clustering Modifier and Type Field Description (package private) Clustering<OPTICSModel>
OPTICSClusterVisualization.Instance. clus
Our clusteringMethods in elki.visualization.visualizers.optics with parameters of type Clustering Modifier and Type Method Description private void
OPTICSClusterVisualization.Instance. drawClusters(Clustering<OPTICSModel> clustering, It<Cluster<OPTICSModel>> clusters, int depth, java.util.Map<Cluster<?>,java.lang.String> colormap)
Recursively draw clusters -
Uses of Clustering in elki.visualization.visualizers.visunproj
Methods in elki.visualization.visualizers.visunproj with parameters of type Clustering Modifier and Type Method Description protected static <M extends Model>
int[]KeyVisualization. findDepth(Clustering<M> c)
Compute the size of the clustering. -
Uses of Clustering in tutorial.clustering
Methods in tutorial.clustering that return Clustering Modifier and Type Method Description Clustering<SimplePrototypeModel<DBID>>
CFSFDP. run(Relation<O> relation)
Perform CFSFDP clustering.Clustering<Model>
NaiveAgglomerativeHierarchicalClustering1. run(Relation<O> relation)
Perform HACClustering<Model>
NaiveAgglomerativeHierarchicalClustering2. run(Relation<O> relation)
Perform HACClustering<Model>
NaiveAgglomerativeHierarchicalClustering3. run(Relation<O> relation)
Perform HACClustering<MeanModel>
SameSizeKMeans. run(Relation<V> relation)
Run k-means with cluster size constraints.
-