Uses of Interface
elki.data.NumberVector
-
Packages that use NumberVector Package Description elki.algorithm Miscellaneous algorithms.elki.algorithm.statistics Statistical analysis algorithms.elki.application.benchmark Benchmarking pseudo algorithms.elki.application.greedyensemble Greedy ensembles for outlier detection.elki.application.statistics Applications to compute some basic data set statistics.elki.clustering Clustering algorithms.elki.clustering.biclustering Biclustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.correlation.cash Helper classes for theCASHalgorithm.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.dbscan.predicates Neighbor and core predicated for Generalized DBSCAN.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.em.models elki.clustering.hierarchical Hierarchical agglomerative clustering (HAC).elki.clustering.hierarchical.birch BIRCH clustering.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids.initialization elki.clustering.onedimensional Clustering algorithms for one-dimensional data.elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.subspace.clique Helper classes for theCLIQUEalgorithm.elki.clustering.svm elki.clustering.uncertain Clustering algorithms for uncertain data.elki.data Basic classes for different data types, database object types and label types.elki.data.model Cluster models classes for various algorithms.elki.data.projection Data projections.elki.data.projection.random Random projection families.elki.data.type Data type information, also used for type restrictions.elki.data.uncertain Uncertain data objects.elki.database.query.distance Prepared queries for distances.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries.elki.database.query.range Prepared queries for ε-range queries, that return all objects within the radius ε.elki.database.relation Relations, materialized and virtual (views).elki.datasource.filter Data filtering, in particular for normalization and projection.elki.datasource.filter.cleaning Filters for data cleaning.elki.datasource.filter.normalization.columnwise Normalizations operating on columns / variates; where each column is treated independently.elki.datasource.filter.normalization.instancewise Instancewise normalization, where each instance is normalized independently.elki.datasource.filter.transform Data space transformations.elki.datasource.filter.typeconversions Filters to perform data type conversions.elki.datasource.parser Parsers for different file formats and data types.elki.distance Distance functions for use within ELKI.elki.distance.colorhistogram Distance functions for color histograms.elki.distance.correlation Distance functions using correlations.elki.distance.geo Geographic (earth) distance functions.elki.distance.histogram Distance functions for one-dimensional histograms.elki.distance.minkowski Minkowski space Lp norms such as the popular Euclidean and Manhattan distances.elki.distance.probabilistic Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence, F-divergence, χ²-divergence, etc.elki.distance.set Distance functions for binary and set type data.elki.distance.subspace Distance functions based on subspaces.elki.distance.timeseries Distance functions designed for time series.elki.evaluation.clustering.internal Internal evaluation measures for clusterings.elki.evaluation.scores.adapter Adapter classes for ranking and scoring measures.elki.index.invertedlist Indexes using inverted lists.elki.index.lsh.hashfamilies Hash function families for LSH.elki.index.lsh.hashfunctions Hash functions for LSH.elki.index.preprocessed.fastoptics Preprocessed index used by the FastOPTICS algorithm.elki.index.preprocessed.knn Indexes providing KNN and rKNN data.elki.index.projected Projected indexes for data.elki.index.tree.betula BETULA clustering by aggregating the data into cluster features.elki.index.tree.betula.distance Distance functions for BETULA and BIRCH.elki.index.tree.betula.features Different variants of Betula and BIRCH cluster features.elki.index.tree.metrical.vptree elki.index.tree.spatial Tree-based index structures for spatial indexing.elki.index.tree.spatial.kd K-d-tree and variants.elki.index.tree.spatial.kd.split elki.index.tree.spatial.rstarvariants R*-tree and variants.elki.index.tree.spatial.rstarvariants.deliclu elki.index.tree.spatial.rstarvariants.flat elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries.elki.index.tree.spatial.rstarvariants.rdknn elki.index.tree.spatial.rstarvariants.rstar elki.index.vafile Vector Approximation File.elki.math Mathematical operations and utilities used throughout the framework.elki.math.linearalgebra The linear algebra package provides classes and computational methods for operations on matrices and vectors.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and eigenvector processing.elki.math.spacefillingcurves Space filling curves.elki.math.statistics.intrinsicdimensionality Methods for estimating the intrinsic dimensionality.elki.outlier Outlier detection algorithms.elki.outlier.anglebased Angle-based outlier detection algorithms.elki.outlier.clustering Clustering based outlier detection.elki.outlier.density Density-based outlier detection algorithms.elki.outlier.distance Distance-based outlier detection algorithms, such as DBOutlier and kNN.elki.outlier.lof LOF family of outlier detection algorithms.elki.outlier.meta Meta outlier detection algorithms: external scores, score rescaling.elki.outlier.spatial Spatial outlier detection algorithms.elki.outlier.subspace Subspace outlier detection methods.elki.outlier.svm Support-Vector-Machines for outlier detection.elki.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers.elki.result Result types, representation and handling.elki.similarity Similarity functions.elki.similarity.kernel Kernel functions.elki.timeseries Algorithms for change point detection in time series.elki.utilities.datastructures.arraylike Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.elki.utilities.referencepoints Package containing strategies to obtain reference points.elki.visualization.parallel3d 3DPC: 3D parallel coordinate plot visualization for ELKI.elki.visualization.parallel3d.layout Layouting algorithms for 3D parallel coordinate plots.elki.visualization.projections Visualization projections.elki.visualization.projector Projectors are responsible for finding appropriate projections for data relations.elki.visualization.svg Base SVG functionality (generation, markers, thumbnails, export, ...).elki.visualization.visualizers.histogram Visualizers based on 1D projected histograms.elki.visualization.visualizers.scatterplot Visualizers based on scatterplots.elki.visualization.visualizers.scatterplot.selection Visualizers for object selection based on 2D projections.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation.tutorial.distancefunction Classes from the tutorial on implementing distance functions. -
-
Uses of NumberVector in elki.algorithm
Classes in elki.algorithm with type parameters of type NumberVector Modifier and Type Class Description classDependencyDerivator<V extends NumberVector>Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA.static classDependencyDerivator.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.algorithm.statistics
Classes in elki.algorithm.statistics with type parameters of type NumberVector Modifier and Type Class Description classEvaluateRankingQuality<V extends NumberVector>Evaluate a distance function with respect to kNN queries.static classEvaluateRankingQuality.Par<V extends NumberVector>Parameterization class.Fields in elki.algorithm.statistics with type parameters of type NumberVector Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>HopkinsStatisticClusteringTendency. distanceDistance function used.protected NumberVectorDistance<? super NumberVector>HopkinsStatisticClusteringTendency.Par. distanceThe distance function to use.Method parameters in elki.algorithm.statistics with type arguments of type NumberVector Modifier and Type Method Description protected doubleHopkinsStatisticClusteringTendency. computeNNForRealData(KNNSearcher<DBIDRef> knnQuery, Relation<NumberVector> relation, int dim)Search nearest neighbors for real data members.protected doubleHopkinsStatisticClusteringTendency. computeNNForUniformData(KNNSearcher<NumberVector> knnQuery, double[] min, double[] extend)Search nearest neighbors for artificial, uniform data.protected voidHopkinsStatisticClusteringTendency. initializeDataExtends(Relation<NumberVector> relation, int dim, double[] min, double[] extend)Initialize the uniform sampling area.private ScalesResultAddSingleScale. run(Relation<? extends NumberVector> rel)Add scales to a single vector relation.private ScalesResultAddUniformScale. run(Relation<? extends NumberVector> rel)Add scales to a single vector relation.java.lang.DoubleHopkinsStatisticClusteringTendency. run(Relation<NumberVector> relation)Compute the Hopkins statistic for a vector relation.Constructor parameters in elki.algorithm.statistics with type arguments of type NumberVector Constructor Description HopkinsStatisticClusteringTendency(NumberVectorDistance<? super NumberVector> distance, int samplesize, RandomFactory random, int rep, int k, double[] minima, double[] maxima)Constructor. -
Uses of NumberVector in elki.application.benchmark
Classes in elki.application.benchmark with type parameters of type NumberVector Modifier and Type Class Description classRangeQueryBenchmark<O extends NumberVector>Benchmarking algorithm that computes a range query for each point.static classRangeQueryBenchmark.Par<O extends NumberVector>Parameterization class -
Uses of NumberVector in elki.application.greedyensemble
Classes in elki.application.greedyensemble with type parameters of type NumberVector Modifier and Type Class Description classComputeKNNOutlierScores<O extends NumberVector>Application that runs a series of kNN-based algorithms on a data set, for building an ensemble in a second step.static classComputeKNNOutlierScores.Par<O extends NumberVector>Parameterization class.Fields in elki.application.greedyensemble declared as NumberVector Modifier and Type Field Description (package private) NumberVectorEvaluatePrecomputedOutlierScores. positiveVector of positive values.Methods in elki.application.greedyensemble that return types with arguments of type NumberVector Modifier and Type Method Description static Relation<NumberVector>GreedyEnsembleExperiment. applyPrescaling(ScalingFunction scaling, Relation<NumberVector> relation, DBIDs skip)Prescale each vector (except when inskip) with the given scaling function.private PrimitiveDistance<NumberVector>GreedyEnsembleExperiment. getDistance(double[] estimated_weights)Methods in elki.application.greedyensemble with parameters of type NumberVector Modifier and Type Method Description private booleanEvaluatePrecomputedOutlierScores. checkForNaNs(NumberVector vec)Check for NaN values.private voidEvaluatePrecomputedOutlierScores. processRow(java.io.PrintStream fout, NumberVector vec, java.lang.String label)protected voidGreedyEnsembleExperiment. singleEnsemble(double[] ensemble, NumberVector vec)Build a single-element "ensemble".Method parameters in elki.application.greedyensemble with type arguments of type NumberVector Modifier and Type Method Description static Relation<NumberVector>GreedyEnsembleExperiment. applyPrescaling(ScalingFunction scaling, Relation<NumberVector> relation, DBIDs skip)Prescale each vector (except when inskip) with the given scaling function. -
Uses of NumberVector in elki.application.statistics
Classes in elki.application.statistics with type parameters of type NumberVector Modifier and Type Class Description classRangeQuerySelectivity<V extends NumberVector>Evaluate the range query selectivity.static classRangeQuerySelectivity.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.clustering
Classes in elki.clustering with type parameters of type NumberVector Modifier and Type Class Description classNaiveMeanShiftClustering<V extends NumberVector>Mean-shift based clustering algorithm.static classNaiveMeanShiftClustering.Par<V extends NumberVector>Parameterizer.Method parameters in elki.clustering with type arguments of type NumberVector Modifier and Type Method Description Clustering<MeanModel>BetulaLeafPreClustering. run(Relation<NumberVector> relation)Run the clustering algorithm. -
Uses of NumberVector in elki.clustering.biclustering
Fields in elki.clustering.biclustering with type parameters of type NumberVector Modifier and Type Field Description protected Relation<? extends NumberVector>AbstractBiclustering. relationRelation we use.Method parameters in elki.clustering.biclustering with type arguments of type NumberVector Modifier and Type Method Description Clustering<M>AbstractBiclustering. run(Relation<? extends NumberVector> relation)Prepares the algorithm for running on a specific database. -
Uses of NumberVector in elki.clustering.correlation
Fields in elki.clustering.correlation with type parameters of type NumberVector Modifier and Type Field Description private Relation<? extends NumberVector>HiCO.Instance. relationData relation.Method parameters in elki.clustering.correlation with type arguments of type NumberVector Modifier and Type Method Description private voidORCLUS. assign(Relation<? extends NumberVector> database, java.util.List<ORCLUS.ORCLUSCluster> clusters)Creates a partitioning of the database by assigning each object to its closest seed.private java.util.List<java.util.List<Cluster<CorrelationModel>>>ERiC. extractCorrelationClusters(Clustering<Model> dbscanResult, Relation<? extends NumberVector> relation, int dimensionality, ERiCNeighborPredicate.Instance npred)Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.private double[][]ORCLUS. findBasis(Relation<? extends NumberVector> database, ORCLUS.ORCLUSCluster cluster, int dim)Finds the basis of the subspace of dimensionalitydimfor the specified cluster.private LMCLUS.SeparationLMCLUS. findSeparation(Relation<? extends NumberVector> relation, DBIDs currentids, int dimension, java.util.Random r)This method samples a number of linear manifolds an tries to determine which the one with the best cluster is.private java.util.List<ORCLUS.ORCLUSCluster>ORCLUS. initialSeeds(Relation<? extends NumberVector> database, int k)Initializes the list of seeds wit a random sample of size k.private voidORCLUS. merge(Relation<? extends NumberVector> relation, java.util.List<ORCLUS.ORCLUSCluster> clusters, int k_new, int d_new, IndefiniteProgress cprogress)Reduces the number of seeds to k_newprivate Relation<ParameterizationFunction>CASH. preprocess(Relation<? extends NumberVector> vrel)Preprocess the dataset, precomputing the parameterization functions.private ORCLUS.ProjectedEnergyORCLUS. projectedEnergy(Relation<? extends NumberVector> relation, ORCLUS.ORCLUSCluster c_i, ORCLUS.ORCLUSCluster c_j, int i, int j, int dim)Computes the projected energy of the specified clusters.Clustering<Model>CASH. run(Relation<? extends NumberVector> rel)Run CASH on the relation.Clustering<DimensionModel>COPAC. run(Database database, Relation<? extends NumberVector> relation)Run the COPAC algorithm.Clustering<CorrelationModel>ERiC. run(Database database, Relation<? extends NumberVector> relation)Performs the ERiC algorithm on the given database.ClusterOrderHiCO. run(Relation<? extends NumberVector> relation)Run the HiCO algorithm.Clustering<Model>LMCLUS. run(Relation<? extends NumberVector> relation)The main LMCLUS (Linear manifold clustering algorithm) is processed in this method.Clustering<Model>ORCLUS. run(Relation<? extends NumberVector> relation)Performs the ORCLUS algorithm on the given database.private ORCLUS.ORCLUSClusterORCLUS. union(Relation<? extends NumberVector> relation, ORCLUS.ORCLUSCluster c1, ORCLUS.ORCLUSCluster c2, int dim)Returns the union of the two specified clusters.Constructor parameters in elki.clustering.correlation with type arguments of type NumberVector Constructor Description Instance(Relation<? extends NumberVector> relation)Constructor. -
Uses of NumberVector in elki.clustering.correlation.cash
Fields in elki.clustering.correlation.cash declared as NumberVector Modifier and Type Field Description private NumberVectorParameterizationFunction. vecThe actual vector.Constructors in elki.clustering.correlation.cash with parameters of type NumberVector Constructor Description ParameterizationFunction(NumberVector vec)Provides a new parameterization function describing all lines in a d-dimensional feature space intersecting in one point p. -
Uses of NumberVector in elki.clustering.dbscan
Classes in elki.clustering.dbscan with type parameters of type NumberVector Modifier and Type Class Description classGriDBSCAN<V extends NumberVector>Using Grid for Accelerating Density-Based Clustering.protected static classGriDBSCAN.Instance<V extends NumberVector>Instance, for a single run.static classGriDBSCAN.Par<O extends NumberVector>Parameterization class.classLSDBC<O extends NumberVector>Locally Scaled Density Based Clustering.static classLSDBC.Par<O extends NumberVector>Parameterization class -
Uses of NumberVector in elki.clustering.dbscan.predicates
Fields in elki.clustering.dbscan.predicates with type parameters of type NumberVector Modifier and Type Field Description private Relation<? extends NumberVector>ERiCNeighborPredicate.Instance. relationVector data relation.Methods in elki.clustering.dbscan.predicates with parameters of type NumberVector Modifier and Type Method Description booleanERiCNeighborPredicate.Instance. strongNeighbors(NumberVector v1, NumberVector v2, PCAFilteredResult pca1, PCAFilteredResult pca2)Computes the distance between two given DatabaseObjects according to this distance function.Method parameters in elki.clustering.dbscan.predicates with type arguments of type NumberVector Modifier and Type Method Description protected COPACNeighborPredicate.COPACModelCOPACNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList knnneighbors, Relation<? extends NumberVector> relation)COPAC model computationprotected PreDeConNeighborPredicate.PreDeConModelFourCNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends NumberVector> relation)protected PreDeConNeighborPredicate.PreDeConModelPreDeConNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends NumberVector> relation)COPACNeighborPredicate.InstanceCOPACNeighborPredicate. instantiate(Relation<? extends NumberVector> relation)Full instantiation method.ERiCNeighborPredicate.InstanceERiCNeighborPredicate. instantiate(Relation<? extends NumberVector> relation)Full instantiation interface.Constructor parameters in elki.clustering.dbscan.predicates with type arguments of type NumberVector Constructor Description Instance(DBIDs ids, DataStore<PCAFilteredResult> storage, Relation<? extends NumberVector> relation)Constructor. -
Uses of NumberVector in elki.clustering.em
Method parameters in elki.clustering.em with type arguments of type NumberVector Modifier and Type Method Description private voidKDTreeEM.KDTree. aggregateStats(Relation<? extends NumberVector> relation, DBIDArrayIter iter, int dim)Aggregate the statistics for a leaf node.private double[]KDTreeEM. analyseDimWidth(Relation<? extends NumberVector> relation)Helper method to retrieve the widths of all data in all dimensions.doubleBetulaGMM. assignProbabilitiesToInstances(Relation<? extends NumberVector> relation, java.util.List<? extends BetulaClusterModel> models, WritableDataStore<double[]> probClusterIGivenX)Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.private voidKDTreeEM.KDTree. computeBoundingBox(Relation<? extends NumberVector> relation, DBIDArrayIter iter)Compute the bounding box.Clustering<EMModel>BetulaGMM. run(Relation<NumberVector> relation)Run the clustering algorithm.Clustering<EMModel>KDTreeEM. run(Relation<? extends NumberVector> relation)Calculates the EM Clustering with the given values by calling makeStats and calculation the new models from the given resultsConstructor parameters in elki.clustering.em with type arguments of type NumberVector Constructor Description KDTree(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs sorted, int left, int right, double[] dimWidth, double mbw)Constructor for a KDTree with statistics needed for KDTreeEM calculation. -
Uses of NumberVector in elki.clustering.em.models
Methods in elki.clustering.em.models with parameters of type NumberVector Modifier and Type Method Description doubleDiagonalGaussianModel. estimateLogDensity(NumberVector vec)doubleMultivariateGaussianModel. estimateLogDensity(NumberVector vec)doubleSphericalGaussianModel. estimateLogDensity(NumberVector vec)doubleTextbookMultivariateGaussianModel. estimateLogDensity(NumberVector vec)doubleTextbookSphericalGaussianModel. estimateLogDensity(NumberVector vec)doubleTwoPassMultivariateGaussianModel. estimateLogDensity(NumberVector vec)voidTwoPassMultivariateGaussianModel. firstPassE(NumberVector vec, double wei)First pass: update the mean only.doubleDiagonalGaussianModel. mahalanobisDistance(NumberVector vec)Compute the Mahalanobis distance from the centroid for a given vector.doubleMultivariateGaussianModel. mahalanobisDistance(NumberVector vec)Compute the Mahalanobis distance from the centroid for a given vector.doubleSphericalGaussianModel. mahalanobisDistance(NumberVector vec)Compute the Mahalanobis distance from the centroid for a given vector.doubleTextbookMultivariateGaussianModel. mahalanobisDistance(NumberVector vec)Compute the Mahalanobis distance from the centroid for a given vector.doubleTextbookSphericalGaussianModel. mahalanobisDistance(NumberVector vec)Compute the Mahalanobis distance from the centroid for a given vector.doubleTwoPassMultivariateGaussianModel. mahalanobisDistance(NumberVector vec)Compute the Mahalanobis distance from the centroid for a given vector.voidDiagonalGaussianModel. updateE(NumberVector vec, double wei)voidMultivariateGaussianModel. updateE(NumberVector vec, double wei)voidSphericalGaussianModel. updateE(NumberVector vec, double wei)voidTextbookMultivariateGaussianModel. updateE(NumberVector vec, double wei)voidTextbookSphericalGaussianModel. updateE(NumberVector vec, double wei)voidTwoPassMultivariateGaussianModel. updateE(NumberVector vec, double wei)Second pass: compute the covariance matrix.Method parameters in elki.clustering.em.models with type arguments of type NumberVector Modifier and Type Method Description java.util.List<DiagonalGaussianModel>DiagonalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<MultivariateGaussianModel>MultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<SphericalGaussianModel>SphericalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<TextbookMultivariateGaussianModel>TextbookMultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<TextbookSphericalGaussianModel>TextbookSphericalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<TwoPassMultivariateGaussianModel>TwoPassMultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k) -
Uses of NumberVector in elki.clustering.hierarchical
Classes in elki.clustering.hierarchical with type parameters of type NumberVector Modifier and Type Class Description classLinearMemoryNNChain<O extends NumberVector>NNchain clustering algorithm with linear memory, for particular linkages (that can be aggregated) and numerical vector data only.static classLinearMemoryNNChain.Instance<O extends NumberVector>Main worker instance of NNChain.static classLinearMemoryNNChain.Par<O extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.clustering.hierarchical.birch
Methods in elki.clustering.hierarchical.birch with parameters of type NumberVector Modifier and Type Method Description protected voidClusteringFeature. addToStatistics(NumberVector nv)Add a number vector to the current node.protected doubleBIRCHLloydKMeans. distance(NumberVector x, double[] y)Compute a distance (and count the distance computations).private ClusteringFeatureCFTree. findLeaf(CFTree.TreeNode node, NumberVector nv)Find the leaf of a cluster, to get the final cluster assignment.ClusteringFeatureCFTree. findLeaf(NumberVector nv)Find the leaf of a cluster, to get the final cluster assignment.private CFTree.TreeNodeCFTree. insert(CFTree.TreeNode node, NumberVector nv)Recursive insertion.voidCFTree. insert(NumberVector nv)Insert a data point into the tree.doubleBIRCHAbsorptionCriterion. squaredCriterion(ClusteringFeature f1, NumberVector n)Quality of a CF when adding a data pointdoubleDiameterCriterion. squaredCriterion(ClusteringFeature f1, NumberVector n)doubleEuclideanDistanceCriterion. squaredCriterion(ClusteringFeature f1, NumberVector n)doubleRadiusCriterion. squaredCriterion(ClusteringFeature f1, NumberVector n)doubleAverageInterclusterDistance. squaredDistance(NumberVector v, ClusteringFeature cf)doubleAverageIntraclusterDistance. squaredDistance(NumberVector v, ClusteringFeature cf)doubleBIRCHDistance. squaredDistance(NumberVector v, ClusteringFeature cf)Distance of a vector to a clustering feature.doubleCentroidEuclideanDistance. squaredDistance(NumberVector v, ClusteringFeature cf)doubleCentroidManhattanDistance. squaredDistance(NumberVector v, ClusteringFeature cf)doubleVarianceIncreaseDistance. squaredDistance(NumberVector v, ClusteringFeature cf)static doubleClusteringFeature. sumOfSquares(NumberVector v)Compute the sum of squares of a vector.Method parameters in elki.clustering.hierarchical.birch with type arguments of type NumberVector Modifier and Type Method Description CFTreeCFTree.Factory. newTree(DBIDs ids, Relation<? extends NumberVector> relation)Make a new tree.Clustering<MeanModel>BIRCHLeafClustering. run(Relation<NumberVector> relation)Run the clustering algorithm.Clustering<KMeansModel>BIRCHLloydKMeans. run(Relation<NumberVector> relation)Run the clustering algorithm. -
Uses of NumberVector in elki.clustering.kmeans
Classes in elki.clustering.kmeans with type parameters of type NumberVector Modifier and Type Class Description classAbstractKMeans<V extends NumberVector,M extends Model>Abstract base class for k-means implementations.static classAbstractKMeans.Par<V extends NumberVector>Parameterization class.classAnnulusKMeans<V extends NumberVector>Annulus k-means algorithm.static classAnnulusKMeans.Par<V extends NumberVector>Parameterization class.classBestOfMultipleKMeans<V extends NumberVector,M extends MeanModel>Run K-Means multiple times, and keep the best run.static classBestOfMultipleKMeans.Par<V extends NumberVector,M extends MeanModel>Parameterization class.classBisectingKMeans<V extends NumberVector,M extends MeanModel>The bisecting k-means algorithm works by starting with an initial partitioning into two clusters, then repeated splitting of the largest cluster to get additional clusters.static classBisectingKMeans.Par<V extends NumberVector,M extends MeanModel>Parameterization class.classCompareMeans<V extends NumberVector>Compare-Means: Accelerated k-means by exploiting the triangle inequality and pairwise distances of means to prune candidate means.static classCompareMeans.Par<V extends NumberVector>Parameterization class.classElkanKMeans<V extends NumberVector>Elkan's fast k-means by exploiting the triangle inequality.static classElkanKMeans.Par<V extends NumberVector>Parameterization class.classExponionKMeans<V extends NumberVector>Newlings's Exponion k-means algorithm, exploiting the triangle inequality.static classExponionKMeans.Par<V extends NumberVector>Parameterization class.classFuzzyCMeans<V extends NumberVector>Fuzzy Clustering developed by Dunn and revisited by BezdekclassGMeans<V extends NumberVector,M extends MeanModel>G-Means extends K-Means and estimates the number of centers with Anderson Darling Test.
Implemented as specialization of XMeans.static classGMeans.Par<V extends NumberVector,M extends MeanModel>Parameterization class.classHamerlyKMeans<V extends NumberVector>Hamerly's fast k-means by exploiting the triangle inequality.static classHamerlyKMeans.Par<V extends NumberVector>Parameterization class.classHartiganWongKMeans<V extends NumberVector>Hartigan and Wong k-means clustering.static classHartiganWongKMeans.Parameterizer<V extends NumberVector>Parameterization class.classKDTreeFilteringKMeans<V extends NumberVector>Filtering or "blacklisting" K-means with k-d-tree acceleration.static classKDTreeFilteringKMeans.Par<V extends NumberVector>Parameterization class.classKDTreePruningKMeans<V extends NumberVector>Pruning K-means with k-d-tree acceleration.static classKDTreePruningKMeans.Par<V extends NumberVector>Parameterization class.interfaceKMeans<V extends NumberVector,M extends Model>Some constants and options shared among kmeans family algorithms.classKMeansMinusMinus<V extends NumberVector>k-means--: A Unified Approach to Clustering and Outlier Detection.static classKMeansMinusMinus.Par<V extends NumberVector>Parameterization class.classKMediansLloyd<V extends NumberVector>k-medians clustering algorithm, but using Lloyd-style bulk iterations instead of the more complicated approach suggested by Kaufman and Rousseeuw (seePAMinstead).static classKMediansLloyd.Par<V extends NumberVector>Parameterization class.classLloydKMeans<V extends NumberVector>The standard k-means algorithm, using bulk iterations and commonly attributed to Lloyd and Forgy (independently).static classLloydKMeans.Par<V extends NumberVector>Parameterization class.classMacQueenKMeans<V extends NumberVector>The original k-means algorithm, using MacQueen style incremental updates; making this effectively an "online" (streaming) algorithm.static classMacQueenKMeans.Par<V extends NumberVector>Parameterization class.classShallotKMeans<V extends NumberVector>Borgelt's Shallot k-means algorithm, exploiting the triangle inequality.static classShallotKMeans.Par<V extends NumberVector>Parameterization class.classSimplifiedElkanKMeans<V extends NumberVector>Simplified version of Elkan's k-means by exploiting the triangle inequality.static classSimplifiedElkanKMeans.Par<V extends NumberVector>Parameterization class.classSingleAssignmentKMeans<V extends NumberVector>Pseudo-k-means variations, that assigns each object to the nearest center.static classSingleAssignmentKMeans.Par<V extends NumberVector>Parameterization class.classSortMeans<V extends NumberVector>Sort-Means: Accelerated k-means by exploiting the triangle inequality and pairwise distances of means to prune candidate means (with sorting).static classSortMeans.Par<V extends NumberVector>Parameterization class.classXMeans<V extends NumberVector,M extends MeanModel>X-means: Extending K-means with Efficient Estimation on the Number of Clusters.static classXMeans.Par<V extends NumberVector,M extends MeanModel>Parameterization class.classYinYangKMeans<V extends NumberVector>Yin-Yang k-Means Clustering.static classYinYangKMeans.Par<V extends NumberVector>Parameterization class.Fields in elki.clustering.kmeans with type parameters of type NumberVector Modifier and Type Field Description protected Relation<? extends NumberVector>AbstractKMeans.Instance. relationData relation.Methods in elki.clustering.kmeans that return types with arguments of type NumberVector Modifier and Type Method Description FuzzyCMeans<NumberVector>FuzzyCMeans.Par. make()Methods in elki.clustering.kmeans with parameters of type NumberVector Modifier and Type Method Description private doubleHartiganWongKMeans.Instance. cacheR1(DBIDIter it, NumberVector vec, int l1)Compute and cache the R1 value.private static voidAbstractKMeans. densePlusEquals(double[] sum, NumberVector vec)Similar to VMath.plusEquals, but accepts a number vector.private static voidAbstractKMeans. densePlusMinusEquals(double[] add, double[] sub, NumberVector vec)Add to one, remove from another.protected doubleAbstractKMeans.Instance. distance(NumberVector x, double[] y)Compute the squared distance (and count the distance computations).protected doubleAbstractKMeans.Instance. distance(NumberVector x, NumberVector y)Compute the squared distance (and count the distance computations).private doubleBetulaLloydKMeans. distance(NumberVector x, double[] y)Updates statistics and calculates distance between two Objects based on selected criteria.protected static voidAbstractKMeans. incrementalUpdateMean(double[] mean, NumberVector vec, int newsize, double op)Compute an incremental update for the mean.static voidAbstractKMeans. minusEquals(double[] sum, NumberVector vec)Similar to VMath.minusEquals, but accepts a number vector.static voidAbstractKMeans. plusEquals(double[] sum, NumberVector vec)Similar to VMath.plusEquals, but accepts a number vector.static voidAbstractKMeans. plusMinusEquals(double[] add, double[] sub, NumberVector vec)Add to one, remove from another.protected doubleAbstractKMeans.Instance. sqrtdistance(NumberVector x, double[] y)Compute the distance (and count the distance computations).protected doubleAbstractKMeans.Instance. sqrtdistance(NumberVector x, NumberVector y)Compute the distance (and count the distance computations).private voidHartiganWongKMeans.Instance. transfer(DBIDRef it, NumberVector vec, int l1, int l2)Transfer a point from one cluster to another.private booleanMacQueenKMeans.Instance. updateMeanAndAssignment(int minIndex, NumberVector fv, DBIDIter iditer)Try to update the cluster assignment.Method parameters in elki.clustering.kmeans with type arguments of type NumberVector Modifier and Type Method Description Clustering<KMeansModel>AbstractKMeans.Instance. buildResult(boolean varstat, Relation<? extends NumberVector> relation)Build the result, recomputing the cluster variance ifvarstatis set to true.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeBoundedMidpoint(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using bounded midpoint splitting.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeMedian(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using median splitting.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeMidpoint(Relation<? extends NumberVector> relation, int left, int right)Build the k-d-tree using midpoint splitting.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeSSQ(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using a variance-based splitting strategy.private static double[][]AbstractKMeans. denseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.protected static double[][]AbstractKMeans. means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.protected double[][]KMediansLloyd.Instance. medians(java.util.List<? extends DBIDs> clusters, double[][] medians, Relation<? extends NumberVector> relation)Returns the median vectors of the given clusters in the given database.protected voidAbstractKMeans.Instance. recomputeVariance(Relation<? extends NumberVector> relation)Recompute the cluster variances.Clustering<KMeansModel>BetulaLloydKMeans. run(Relation<NumberVector> relation)Run the clustering algorithm.Constructor parameters in elki.clustering.kmeans with type arguments of type NumberVector Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means, int t)Constructor.KDNode(Relation<? extends NumberVector> relation, DBIDArrayIter iter, int start, int end)Constructor. -
Uses of NumberVector in elki.clustering.kmeans.initialization
Classes in elki.clustering.kmeans.initialization with type parameters of type NumberVector Modifier and Type Class Description static classFirstK.Par<V extends NumberVector>Parameterization class.classSampleKMeans<V extends NumberVector>Initialize k-means by running k-means on a sample of the data set only.static classSampleKMeans.Par<V extends NumberVector>Parameterization class.Fields in elki.clustering.kmeans.initialization with type parameters of type NumberVector Modifier and Type Field Description protected Relation<? extends NumberVector>KMC2.Instance. relationData relation.protected Relation<? extends NumberVector>KMeansPlusPlus.NumberVectorInstance. relationData relation.protected Relation<? extends NumberVector>SphericalKMeansPlusPlus.Instance. relationData relation.Methods in elki.clustering.kmeans.initialization with parameters of type NumberVector Modifier and Type Method Description protected doubleKMC2.Instance. distance(NumberVector a, DBIDRef b)Compute the distance of two objects.protected doubleKMeansPlusPlus.NumberVectorInstance. distance(NumberVector a, DBIDRef b)protected doubleKMC2.Instance. initialWeights(NumberVector first)Initialize the weight list.protected doubleSphericalAFKMC2.Instance. initialWeights(NumberVector first)protected doubleSphericalKMeansPlusPlus.Instance. initialWeights(NumberVector first)Initialize the weight list.protected doubleSphericalAFKMC2.Instance. similarity(NumberVector a, DBIDRef b)Compute the distance of two objects.protected doubleSphericalKMeansPlusPlus.Instance. similarity(NumberVector a, DBIDRef b)Compute the distance of two objects.protected doubleSphericalKMeansPlusPlus.Instance. updateWeights(NumberVector latest)Update the weight list.Method parameters in elki.clustering.kmeans.initialization with type arguments of type NumberVector Modifier and Type Method Description double[][]AFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FarthestPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FarthestSumPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FirstK. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]KMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]KMeansInitialization. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)Choose initial meansdouble[][]KMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]Ostrovsky. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]Predefined. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomlyChosen. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomNormalGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomUniformGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SampleKMeans. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SphericalAFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SphericalKMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)protected voidKMC2.Instance. chooseRemaining(int k, java.util.List<NumberVector> means, double weightsum)Choose remaining means, weighted by distance.protected voidKMeansPlusPlus.NumberVectorInstance. chooseRemaining(int k, java.util.List<NumberVector> means, double weightsum)Choose remaining means, weighted by distance.protected voidSphericalKMeansPlusPlus.Instance. chooseRemaining(int k, java.util.List<NumberVector> means, double weightsum)Choose remaining means, weighted by distance.protected doubleKMC2.Instance. distance(DBIDRef cand, java.util.List<NumberVector> means)Minimum distance to the current means.protected doubleSphericalAFKMC2.Instance. distance(DBIDRef cand, java.util.List<NumberVector> means)double[][]Ostrovsky.NumberVectorInstance. run(Relation<? extends NumberVector> relation, int k)static double[][]AbstractKMeansInitialization. unboxVectors(java.util.List<? extends NumberVector> means)Unbox database means to primitive means.Constructor parameters in elki.clustering.kmeans.initialization with type arguments of type NumberVector Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)Constructor.Instance(Relation<? extends NumberVector> relation, int m, double alpha, RandomFactory rnd)Constructor.Instance(Relation<? extends NumberVector> relation, double alpha, RandomFactory rnd)Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)Constructor. -
Uses of NumberVector in elki.clustering.kmeans.parallel
Classes in elki.clustering.kmeans.parallel with type parameters of type NumberVector Modifier and Type Class Description classKMeansProcessor<V extends NumberVector>Parallel k-means implementation.static classKMeansProcessor.Instance<V extends NumberVector>Instance to process part of the data set, for a single iteration.classParallelLloydKMeans<V extends NumberVector>Parallel implementation of k-Means clustering.static classParallelLloydKMeans.Par<V extends NumberVector>Parameterization class -
Uses of NumberVector in elki.clustering.kmeans.quality
Classes in elki.clustering.kmeans.quality with type parameters of type NumberVector Modifier and Type Class Description classAbstractKMeansQualityMeasure<O extends NumberVector>Base class for evaluating clusterings by information criteria (such as AIC or BIC).interfaceKMeansQualityMeasure<O extends NumberVector>Interface for computing the quality of a K-Means clustering.Methods in elki.clustering.kmeans.quality with type parameters of type NumberVector Modifier and Type Method Description <V extends NumberVector>
doubleAkaikeInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleAkaikeInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterionZhao. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleWithinClusterMeanDistance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleWithinClusterVariance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)Method parameters in elki.clustering.kmeans.quality with type arguments of type NumberVector Modifier and Type Method Description static doubleAbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static doubleBayesianInformationCriterionXMeans. logLikelihoodXMeans(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static doubleBayesianInformationCriterionZhao. logLikelihoodZhao(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static intAbstractKMeansQualityMeasure. numberOfFreeParameters(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering)Compute the number of free parameters.static doubleAbstractKMeansQualityMeasure. varianceContributionOfCluster(Cluster<? extends MeanModel> cluster, NumberVectorDistance<?> distance, Relation<? extends NumberVector> relation)Variance contribution of a single cluster. -
Uses of NumberVector in elki.clustering.kmeans.spherical
Classes in elki.clustering.kmeans.spherical with type parameters of type NumberVector Modifier and Type Class Description classEuclideanSphericalElkanKMeans<V extends NumberVector>Elkan's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.static classEuclideanSphericalElkanKMeans.Par<V extends NumberVector>Parameterization class.classEuclideanSphericalHamerlyKMeans<V extends NumberVector>A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.static classEuclideanSphericalHamerlyKMeans.Par<V extends NumberVector>Parameterization class.classEuclideanSphericalSimplifiedElkanKMeans<V extends NumberVector>A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.static classEuclideanSphericalSimplifiedElkanKMeans.Par<V extends NumberVector>Parameterization class.classSphericalElkanKMeans<V extends NumberVector>Elkan's fast k-means by exploiting the triangle inequality.static classSphericalElkanKMeans.Par<V extends NumberVector>Parameterization class.classSphericalHamerlyKMeans<V extends NumberVector>A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality.static classSphericalHamerlyKMeans.Par<V extends NumberVector>Parameterization class.classSphericalKMeans<V extends NumberVector>The standard spherical k-means algorithm.static classSphericalKMeans.Par<V extends NumberVector>Parameterization class.classSphericalSimplifiedElkanKMeans<V extends NumberVector>A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality.static classSphericalSimplifiedElkanKMeans.Par<V extends NumberVector>Parameterization class.classSphericalSimplifiedHamerlyKMeans<V extends NumberVector>A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality.static classSphericalSimplifiedHamerlyKMeans.Par<V extends NumberVector>Parameterization class.classSphericalSingleAssignmentKMeans<V extends NumberVector>Pseudo-k-Means variations, that assigns each object to the nearest center.static classSphericalSingleAssignmentKMeans.Par<V extends NumberVector>Parameterization class.Methods in elki.clustering.kmeans.spherical with parameters of type NumberVector Modifier and Type Method Description protected doubleSphericalKMeans.Instance. distance(NumberVector x, double[] y)protected doubleSphericalKMeans.Instance. distance(NumberVector x, NumberVector y)protected doubleSphericalKMeans.Instance. similarity(NumberVector vec1, double[] vec2)Compute the similarity of two objects (and count this operation).protected doubleSphericalKMeans.Instance. sqrtdistance(NumberVector x, double[] y)protected doubleSphericalKMeans.Instance. sqrtdistance(NumberVector x, NumberVector y)Method parameters in elki.clustering.kmeans.spherical with type arguments of type NumberVector Modifier and Type Method Description protected static double[][]SphericalKMeans.Instance. means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.protected voidSphericalKMeans.Instance. recomputeVariance(Relation<? extends NumberVector> relation)Constructor parameters in elki.clustering.kmeans.spherical with type arguments of type NumberVector Constructor Description Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor. -
Uses of NumberVector in elki.clustering.kmedoids.initialization
Method parameters in elki.clustering.kmedoids.initialization with type arguments of type NumberVector Modifier and Type Method Description double[][]BUILD. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]LAB. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]ParkJun. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance) -
Uses of NumberVector in elki.clustering.onedimensional
Method parameters in elki.clustering.onedimensional with type arguments of type NumberVector Modifier and Type Method Description Clustering<ClusterModel>KNNKernelDensityMinimaClustering. run(Relation<? extends NumberVector> relation)Run the clustering algorithm on a data relation. -
Uses of NumberVector in elki.clustering.optics
Classes in elki.clustering.optics with type parameters of type NumberVector Modifier and Type Class Description classDeLiClu<V extends NumberVector>DeliClu: Density-Based Hierarchical Clusteringstatic classDeLiClu.Par<V extends NumberVector>Parameterization class.classFastOPTICS<V extends NumberVector>FastOPTICS algorithm (Fast approximation of OPTICS)static classFastOPTICS.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.clustering.subspace
Classes in elki.clustering.subspace with type parameters of type NumberVector Modifier and Type Class Description classSUBCLU<V extends NumberVector>Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces.static classSUBCLU.Par<V extends NumberVector>Parameterization class.Fields in elki.clustering.subspace with type parameters of type NumberVector Modifier and Type Field Description private Relation<? extends NumberVector>DiSH.Instance. relationData relation.private Relation<? extends NumberVector>HiSC.Instance. relationData relation.Methods in elki.clustering.subspace with type parameters of type NumberVector Modifier and Type Method Description <V extends NumberVector>
Clustering<SubspaceModel>PROCLUS. run(Relation<V> relation)Performs the PROCLUS algorithm on the given database.Methods in elki.clustering.subspace with parameters of type NumberVector Modifier and Type Method Description private doublePROCLUS. manhattanSegmentalDistance(NumberVector o1, double[] o2, long[] dimensions)Returns the Manhattan segmental distance between o1 and o2 relative to the specified dimensions.private doublePROCLUS. manhattanSegmentalDistance(NumberVector o1, NumberVector o2, long[] dimensions)Returns the Manhattan segmental distance between o1 and o2 relative to the specified dimensions.private intDiSH. subspaceDimensionality(NumberVector v1, NumberVector v2, long[] pv1, long[] pv2, long[] commonPreferenceVector)Compute the common subspace dimensionality of two vectors.private voidCLIQUE. updateMinMax(NumberVector featureVector, double[] minima, double[] maxima)Updates the minima and maxima array according to the specified feature vector.protected static doubleDiSH. weightedDistance(NumberVector v1, NumberVector v2, long[] weightVector)Computes the weighted distance between the two specified vectors according to the given preference vector.doubleHiSC. weightedDistance(NumberVector v1, NumberVector v2, long[] weightVector)Computes the weighted distance between the two specified vectors according to the given preference vector.Method parameters in elki.clustering.subspace with type arguments of type NumberVector Modifier and Type Method Description private java.util.ArrayList<PROCLUS.PROCLUSCluster>PROCLUS. assignPoints(ArrayDBIDs m_current, long[][] dimensions, Relation<? extends NumberVector> database)Assigns the objects to the clusters.private voidP3C. assignUnassigned(Relation<? extends NumberVector> relation, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, ModifiableDBIDs unassigned)Assign unassigned objects to best candidate based on shortest Mahalanobis distance.private doublePROCLUS. avgDistance(double[] centroid, DBIDs objectIDs, Relation<? extends NumberVector> database, int dimension)Computes the average distance of the objects to the centroid along the specified dimension.private voidDiSH. buildHierarchy(Relation<? extends NumberVector> database, Clustering<SubspaceModel> clustering, java.util.List<Cluster<SubspaceModel>> clusters, int dimensionality)Builds the cluster hierarchy.private voidDiSH. checkClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)Removes the clusters with size < minpts from the cluster map and adds them to their parents.private Clustering<SubspaceModel>DiSH. computeClusters(Relation<? extends NumberVector> database, DiSH.DiSHClusterOrder clusterOrder)Computes the hierarchical clusters according to the cluster order.private voidP3C. computeFuzzyMembership(Relation<? extends NumberVector> relation, java.util.ArrayList<P3C.Signature> clusterCores, ModifiableDBIDs unassigned, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, int dim)Computes a fuzzy membership with the weights based on which cluster cores each data point is part of.protected booleanDOC. dimensionIsRelevant(int dimension, Relation<? extends NumberVector> relation, DBIDs points)Utility method to test if a given dimension is relevant as determined via a set of reference points (i.e. if the variance along the attribute is lower than the threshold).private doublePROCLUS. evaluateClusters(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters, long[][] dimensions, Relation<? extends NumberVector> database)Evaluates the quality of the clusters.private it.unimi.dsi.fastutil.objects.Object2ObjectOpenCustomHashMap<long[],java.util.List<ArrayModifiableDBIDs>>DiSH. extractClusters(Relation<? extends NumberVector> relation, DiSH.DiSHClusterOrder clusterOrder)Extracts the clusters from the cluster order.private java.util.List<PROCLUS.PROCLUSCluster>PROCLUS. finalAssignment(java.util.List<Pair<double[],long[]>> dimensions, Relation<? extends NumberVector> database)Refinement step to assign the objects to the final clusters.private java.util.List<CLIQUESubspace>CLIQUE. findDenseSubspaceCandidates(Relation<? extends NumberVector> database, java.util.List<CLIQUESubspace> denseSubspaces)Determines thek-dimensional dense subspace candidates from the specified(k-1)-dimensional dense subspaces.private java.util.List<CLIQUESubspace>CLIQUE. findDenseSubspaces(Relation<? extends NumberVector> database, java.util.List<CLIQUESubspace> denseSubspaces)Determines thek-dimensional dense subspaces and performs a pruning if this option is chosen.private long[][]PROCLUS. findDimensions(ArrayDBIDs medoids, Relation<? extends NumberVector> relation, DistanceQuery<? extends NumberVector> distance, RangeSearcher<DBIDRef> rangeQuery)Determines the set of correlated dimensions for each medoid in the specified medoid set.private long[][]PROCLUS. findDimensions(ArrayDBIDs medoids, Relation<? extends NumberVector> relation, DistanceQuery<? extends NumberVector> distance, RangeSearcher<DBIDRef> rangeQuery)Determines the set of correlated dimensions for each medoid in the specified medoid set.private java.util.List<Pair<double[],long[]>>PROCLUS. findDimensions(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters, Relation<? extends NumberVector> database)Refinement step that determines the set of correlated dimensions for each cluster centroid.protected DBIDsDOC. findNeighbors(DBIDRef q, long[] nD, ArrayModifiableDBIDs S, Relation<? extends NumberVector> relation)Find the neighbors of point q in the given subspaceprivate java.util.List<CLIQUESubspace>CLIQUE. findOneDimensionalDenseSubspaceCandidates(Relation<? extends NumberVector> database)Determines the one-dimensional dense subspace candidates by making a pass over the database.private java.util.List<CLIQUESubspace>CLIQUE. findOneDimensionalDenseSubspaces(Relation<? extends NumberVector> database)Determines the one dimensional dense subspaces and performs a pruning if this option is chosen.private voidP3C. findOutliers(Relation<? extends NumberVector> relation, java.util.List<MultivariateGaussianModel> models, java.util.ArrayList<P3C.ClusterCandidate> clusterCandidates, ModifiableDBIDs noise)Performs outlier detection by testing the Mahalanobis distance of each point in a cluster against the critical value of the ChiSquared distribution with as many degrees of freedom as the cluster has relevant attributes.private Pair<long[],ArrayModifiableDBIDs>DiSH. findParent(Relation<? extends NumberVector> relation, Pair<long[],ArrayModifiableDBIDs> child, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)Returns the parent of the specified clusterprivate DataStore<DBIDs>PROCLUS. getLocalities(DBIDs medoids, DistanceQuery<? extends NumberVector> distance, RangeSearcher<DBIDRef> rangeQuery)Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i.private ArrayDBIDsPROCLUS. greedy(DistanceQuery<? extends NumberVector> distance, DBIDs sampleSet, int m, java.util.Random random)Returns a piercing set of k medoids from the specified sample set.private java.util.Collection<CLIQUEUnit>CLIQUE. initOneDimensionalUnits(Relation<? extends NumberVector> database)Initializes and returns the one dimensional units.private booleanDiSH. isParent(Relation<? extends NumberVector> relation, Cluster<SubspaceModel> parent, It<Cluster<SubspaceModel>> iter, int db_dim)Returns true, if the specified parent cluster is a parent of one child of the children clusters.protected Cluster<SubspaceModel>DOC. makeCluster(Relation<? extends NumberVector> relation, DBIDs C, long[] D)Utility method to create a subspace cluster from a list of DBIDs and the relevant attributes.private SetDBIDs[][]P3C. partitionData(Relation<? extends NumberVector> relation, int bins)Partition the data set intobinsbins in each dimension independently.Clustering<SubspaceModel>CLIQUE. run(Relation<? extends NumberVector> relation)Performs the CLIQUE algorithm on the given database.Clustering<SubspaceModel>DiSH. run(Relation<? extends NumberVector> relation)Performs the DiSH algorithm on the given database.Clustering<SubspaceModel>DOC. run(Relation<? extends NumberVector> relation)Performs the DOC or FastDOC (as configured) algorithm.ClusterOrderHiSC. run(Relation<? extends NumberVector> relation)Run the HiSC algorithmClustering<SubspaceModel>P3C. run(Relation<? extends NumberVector> relation)Performs the P3C algorithm on the given Database.protected Cluster<SubspaceModel>DOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)Performs a single run of DOC, finding a single cluster.protected Cluster<SubspaceModel>FastDOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)Performs a single run of FastDOC, finding a single cluster.private java.util.List<Cluster<SubspaceModel>>DiSH. sortClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order.Constructor parameters in elki.clustering.subspace with type arguments of type NumberVector Constructor Description Instance(Relation<? extends NumberVector> relation)Constructor.Instance(Relation<? extends NumberVector> relation)Constructor. -
Uses of NumberVector in elki.clustering.subspace.clique
Methods in elki.clustering.subspace.clique with parameters of type NumberVector Modifier and Type Method Description booleanCLIQUEUnit. addFeatureVector(DBIDRef id, NumberVector vector)Adds the id of the specified feature vector to this unit, if this unit contains the feature vector.booleanCLIQUEUnit. contains(NumberVector vector)Returns true, if the intervals of this unit contain the specified feature vector. -
Uses of NumberVector in elki.clustering.svm
Fields in elki.clustering.svm with type parameters of type NumberVector Modifier and Type Field Description (package private) PrimitiveSimilarity<? super NumberVector>SupportVectorClustering. kernelKernel function.protected PrimitiveSimilarity<? super NumberVector>SupportVectorClustering.Par. kernelKernel in use.Methods in elki.clustering.svm with parameters of type NumberVector Modifier and Type Method Description private booleanSupportVectorClustering. accept(NumberVector cur, RegressionModel model, double fixed, ArrayDBIDs ids, SimilarityQuery<NumberVector> sim, double r_square)evaluate if a point cur is inside the sphere in kernel space.Method parameters in elki.clustering.svm with type arguments of type NumberVector Modifier and Type Method Description private booleanSupportVectorClustering. accept(NumberVector cur, RegressionModel model, double fixed, ArrayDBIDs ids, SimilarityQuery<NumberVector> sim, double r_square)evaluate if a point cur is inside the sphere in kernel space.private doubleSupportVectorClustering. calcfixedpart(RegressionModel model, ArrayDBIDs ids, SimilarityQuery<NumberVector> sim)calculate fixed part of model evaluationprivate booleanSupportVectorClustering. checkConnectivity(Relation<NumberVector> relation, double[] start, DBIDRef destRef, RegressionModel model, double fixed, ArrayDBIDs ids, SimilarityQuery<NumberVector> sim, double r_squared)Checks if the connecting line between start and dest lies inside the kernel space sphere.private booleanSupportVectorClustering. checkConnectivity(Relation<NumberVector> relation, double[] start, DBIDRef destRef, RegressionModel model, double fixed, ArrayDBIDs ids, SimilarityQuery<NumberVector> sim, double r_squared)Checks if the connecting line between start and dest lies inside the kernel space sphere.Clustering<Model>SupportVectorClustering. run(Relation<NumberVector> relation)perform clusteringConstructor parameters in elki.clustering.svm with type arguments of type NumberVector Constructor Description SupportVectorClustering(PrimitiveSimilarity<? super NumberVector> kernel, double C)Constructor. -
Uses of NumberVector in elki.clustering.uncertain
Methods in elki.clustering.uncertain with parameters of type NumberVector Modifier and Type Method Description protected doubleUKMeans. getExpectedRepDistance(NumberVector rep, DiscreteUncertainObject uo)Get expected distance between a Vector and an uncertain objectConstructor parameters in elki.clustering.uncertain with type arguments of type NumberVector Constructor Description CKMeans(NumberVectorDistance<? super NumberVector> distance, int k, int maxiter, KMeansInitialization initializer)Constructor that uses Lloyd's k-means algorithm. -
Uses of NumberVector in elki.data
Classes in elki.data with type parameters of type NumberVector Modifier and Type Interface Description static interfaceNumberVector.Factory<V extends NumberVector>Factory API for this feature vector.Subinterfaces of NumberVector in elki.data Modifier and Type Interface Description interfaceSparseNumberVectorCombines the SparseFeatureVector and NumberVector.Classes in elki.data that implement NumberVector Modifier and Type Class Description classBitVectorVector using a dense bit set encoding, based onlong[]storage.classByteVectorVector usingbyte[]storage.classDoubleVectorVector type usingdouble[]storage for real numbers.classFloatVectorVector type usingfloat[]storage, thus needing approximately half as much memory asDoubleVector.classIntegerVectorVector type usingint[]storage.classOneDimensionalDoubleVectorSpecialized class implementing a one-dimensional double vector without using an array.classShortVectorVector type usingshort[]storage.classSparseByteVectorSparse vector type, usingbyte[]for storing the values, andint[]for storing the indexes, approximately 5 bytes per non-zero value (limited to -128..+127).classSparseDoubleVectorSparse vector type, usingdouble[]for storing the values, andint[]for storing the indexes, approximately 12 bytes per non-zero value.classSparseFloatVectorSparse vector type, usingfloat[]for storing the values, andint[]for storing the indexes, approximately 8 bytes per non-zero value.classSparseIntegerVectorSparse vector type, usingint[]for storing the values, andint[]for storing the indexes, approximately 8 bytes per non-zero integer value.classSparseShortVectorSparse vector type, usingshort[]for storing the values, andint[]for storing the indexes, approximately 6 bytes per non-zero value.Fields in elki.data with type parameters of type NumberVector Modifier and Type Field Description private Relation<? extends NumberVector>VectorUtil.SortDBIDsBySingleDimension. dataThe relation to sort.static VectorFieldTypeInformation<NumberVector>NumberVector. FIELDInput type for algorithms that require number vector fields.static VectorFieldTypeInformation<NumberVector>NumberVector. FIELD_1DType request for two-dimensional number vectorsstatic VectorFieldTypeInformation<NumberVector>NumberVector. FIELD_2DType request for two-dimensional number vectorsstatic VectorTypeInformation<NumberVector>NumberVector. VARIABLE_LENGTHNumber vectors of variable length.Methods in elki.data with type parameters of type NumberVector Modifier and Type Method Description static <V extends NumberVector>
VVectorUtil. project(V v, long[] selectedAttributes, NumberVector.Factory<V> factory)Project a number vector to the specified attributes.static <V extends NumberVector>
VVectorUtil. randomVector(NumberVector.Factory<V> factory, int dim)Produce a new vector based on random numbers in [0:1].static <V extends NumberVector>
VVectorUtil. randomVector(NumberVector.Factory<V> factory, int dim, java.util.Random r)Produce a new vector based on random numbers in [0:1].Methods in elki.data with parameters of type NumberVector Modifier and Type Method Description static doubleVectorUtil. angle(NumberVector v1, NumberVector v2, NumberVector o)Compute the angle between two vectors with respect to a reference point.static doubleVectorUtil. angleDense(NumberVector v1, NumberVector v2)Compute the absolute cosine of the angle between two dense vectors.static doubleVectorUtil. angleSparseDense(SparseNumberVector v1, NumberVector v2)Compute the angle for a sparse and a dense vector.intVectorUtil.SortVectorsBySingleDimension. compare(NumberVector o1, NumberVector o2)static doubleVectorUtil. cosAngle(NumberVector v1, NumberVector v2)Compute the absolute cosine of the angle between two vectors.static doubleVectorUtil. dot(NumberVector v1, double[] v2)Compute the dot product of the angle between two vectors.static doubleVectorUtil. dot(NumberVector v1, NumberVector v2)Compute the dot product of the angle between two vectors.static doubleVectorUtil. dotDense(NumberVector v1, double[] v2)Compute the dot product of two dense vectors.static doubleVectorUtil. dotDense(NumberVector v1, NumberVector v2)Compute the dot product of two dense vectors.static doubleVectorUtil. dotSparseDense(SparseNumberVector v1, NumberVector v2)Compute the dot product for a sparse and a dense vector.default VNumberVector.Factory. newNumberVector(NumberVector values)Returns a new NumberVector of N for the given values.Constructor parameters in elki.data with type arguments of type NumberVector Constructor Description SortDBIDsBySingleDimension(Relation<? extends NumberVector> data)Constructor.SortDBIDsBySingleDimension(Relation<? extends NumberVector> data, int dim)Constructor. -
Uses of NumberVector in elki.data.model
Methods in elki.data.model with type parameters of type NumberVector Modifier and Type Method Description static <V extends NumberVector>
VModelUtil. getPrototype(Model model, Relation<? extends V> relation, NumberVector.Factory<V> factory)Get (and convert!)static <V extends NumberVector>
VModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends V> relation, DBIDs ids, NumberVector.Factory<V> factory)Get the representative vector for a cluster model, or compute the centroid.Methods in elki.data.model that return NumberVector Modifier and Type Method Description static NumberVectorModelUtil. getPrototype(Model model, Relation<? extends NumberVector> relation)Get the representative vector for a cluster model.static NumberVectorModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends NumberVector> relation, DBIDs ids)Get the representative vector for a cluster model, or compute the centroid.Methods in elki.data.model with parameters of type NumberVector Modifier and Type Method Description double[]CorrelationAnalysisSolution. dataVector(NumberVector p)Returns the data vectors after projection.double[]CorrelationAnalysisSolution. errorVector(NumberVector p)Returns the error vectors after projection.doubleCorrelationAnalysisSolution. squaredDistance(NumberVector p)Returns the distance of NumberVector p from the hyperplane underlying this solution.Method parameters in elki.data.model with type arguments of type NumberVector Modifier and Type Method Description static NumberVectorModelUtil. getPrototype(Model model, Relation<? extends NumberVector> relation)Get the representative vector for a cluster model.static NumberVectorModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends NumberVector> relation, DBIDs ids)Get the representative vector for a cluster model, or compute the centroid.Constructor parameters in elki.data.model with type arguments of type NumberVector Constructor Description CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<? extends NumberVector> db, double[][] strongEigenvectors, double[][] weakEigenvectors, double[][] similarityMatrix, double[] centroid)Provides a new CorrelationAnalysisSolution holding the specified matrix.CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<? extends NumberVector> db, double[][] strongEigenvectors, double[][] weakEigenvectors, double[][] similarityMatrix, double[] centroid, java.text.NumberFormat nf)Provides a new CorrelationAnalysisSolution holding the specified matrix and number format. -
Uses of NumberVector in elki.data.projection
Classes in elki.data.projection with type parameters of type NumberVector Modifier and Type Class Description classLatLngToECEFProjection<V extends NumberVector>Project (Latitude, Longitude) vectors to (X, Y, Z), from spherical coordinates to ECEF (earth-centered earth-fixed).classLngLatToECEFProjection<V extends NumberVector>Project (Longitude, Latitude) vectors to (X, Y, Z), from spherical coordinates to ECEF (earth-centered earth-fixed).classNumericalFeatureSelection<V extends NumberVector>Projection class for number vectors.static classNumericalFeatureSelection.Par<V extends NumberVector>Parameterization class.classRandomProjection<V extends NumberVector>Randomized projections of the data.Methods in elki.data.projection that return types with arguments of type NumberVector Modifier and Type Method Description LatLngToECEFProjection<NumberVector>LatLngToECEFProjection.Par. make()LngLatToECEFProjection<NumberVector>LngLatToECEFProjection.Par. make()RandomProjection<NumberVector>RandomProjection.Par. make()Methods in elki.data.projection with parameters of type NumberVector Modifier and Type Method Description java.lang.DoubleFeatureSelection.ProjectedNumberFeatureVectorAdapter. get(NumberVector array, int off)doubleFeatureSelection.ProjectedNumberFeatureVectorAdapter. getDouble(NumberVector array, int off)longFeatureSelection.ProjectedNumberFeatureVectorAdapter. getLong(NumberVector array, int off)intFeatureSelection.ProjectedNumberFeatureVectorAdapter. size(NumberVector array) -
Uses of NumberVector in elki.data.projection.random
Methods in elki.data.projection.random with parameters of type NumberVector Modifier and Type Method Description double[]AbstractRandomProjectionFamily.MatrixProjection. project(NumberVector in)double[]AbstractRandomProjectionFamily.MatrixProjection. project(NumberVector in, double[] ret)double[]RandomProjectionFamily.Projection. project(NumberVector in)Project a single vector.double[]RandomProjectionFamily.Projection. project(NumberVector in, double[] buffer)Project a single vector, into the given buffer.double[]RandomSubsetProjectionFamily.SubsetProjection. project(NumberVector in)double[]RandomSubsetProjectionFamily.SubsetProjection. project(NumberVector in, double[] buffer)double[]SimplifiedRandomHyperplaneProjectionFamily.SignedProjection. project(NumberVector in)double[]SimplifiedRandomHyperplaneProjectionFamily.SignedProjection. project(NumberVector vec, double[] ret)private double[]SimplifiedRandomHyperplaneProjectionFamily.SignedProjection. projectDense(NumberVector in, double[] ret)Slower version, for dense multiplication. -
Uses of NumberVector in elki.data.type
Fields in elki.data.type with type parameters of type NumberVector Modifier and Type Field Description static MultivariateSeriesTypeInformation<NumberVector>TypeUtil. MULTIVARIATE_SERIESType request for multivariate time series.static VectorFieldTypeInformation<NumberVector>TypeUtil. NUMBER_VECTOR_FIELDInput type for algorithms that require number vector fields.static VectorFieldTypeInformation<? super NumberVector>TypeUtil. NUMBER_VECTOR_FIELD_1DType request for two-dimensional number vectorsstatic VectorFieldTypeInformation<? super NumberVector>TypeUtil. NUMBER_VECTOR_FIELD_2DType request for two-dimensional number vectorsstatic VectorTypeInformation<NumberVector>TypeUtil. NUMBER_VECTOR_VARIABLE_LENGTHNumber vectors of variable length. -
Uses of NumberVector in elki.data.uncertain
Methods in elki.data.uncertain with parameters of type NumberVector Modifier and Type Method Description protected static HyperBoundingBoxAbstractUncertainObject. computeBounds(NumberVector[] samples)Compute the bounding box for some samples. -
Uses of NumberVector in elki.database.query.distance
Classes in elki.database.query.distance with type parameters of type NumberVector Modifier and Type Class Description classLinearScanEuclideanPrioritySearcher<Q,O extends NumberVector>Default linear scan search class, for Euclidean distance.static classLinearScanEuclideanPrioritySearcher.ByDBID<O extends NumberVector>Search by DBID.static classLinearScanEuclideanPrioritySearcher.ByObject<O extends NumberVector>Search by Object.Fields in elki.database.query.distance declared as NumberVector Modifier and Type Field Description private OLinearScanEuclideanPrioritySearcher. queryCurrent query object. -
Uses of NumberVector in elki.database.query.knn
Classes in elki.database.query.knn with type parameters of type NumberVector Modifier and Type Class Description classLinearScanEuclideanKNNByObject<O extends NumberVector>Instance of this query for a particular database. -
Uses of NumberVector in elki.database.query.range
Classes in elki.database.query.range with type parameters of type NumberVector Modifier and Type Class Description classLinearScanEuclideanRangeByObject<O extends NumberVector>Optimized linear scan for Euclidean distance range queries. -
Uses of NumberVector in elki.database.relation
Methods in elki.database.relation with type parameters of type NumberVector Modifier and Type Method Description static <V extends NumberVector>
NumberVector.Factory<V>RelationUtil. getNumberVectorFactory(Relation<V> relation)Get the number vector factory of a database relation.static <V extends NumberVector,T extends NumberVector>
Relation<V>RelationUtil. relationUglyVectorCast(Relation<T> database)An ugly vector type cast unavoidable in some situations due to Generics.static <V extends NumberVector,T extends NumberVector>
Relation<V>RelationUtil. relationUglyVectorCast(Relation<T> database)An ugly vector type cast unavoidable in some situations due to Generics.Method parameters in elki.database.relation with type arguments of type NumberVector Modifier and Type Method Description static double[][]RelationUtil. computeMinMax(Relation<? extends NumberVector> relation)Determines the minimum and maximum values in each dimension of all objects stored in the given database.static double[][]RelationUtil. relationAsMatrix(Relation<? extends NumberVector> relation, ArrayDBIDs ids)Copy a relation into a double matrix. -
Uses of NumberVector in elki.datasource.filter
Classes in elki.datasource.filter with type parameters of type NumberVector Modifier and Type Class Description classAbstractVectorConversionFilter<I,O extends NumberVector>Abstract class for filters that produce number vectors.classAbstractVectorStreamConversionFilter<I,O extends NumberVector>Abstract base class for streaming filters that produce vectors.Methods in elki.datasource.filter with type parameters of type NumberVector Modifier and Type Method Description static <V extends NumberVector>
NumberVector.Factory<V>FilterUtil. guessFactory(SimpleTypeInformation<V> in)Try to guess the appropriate factory. -
Uses of NumberVector in elki.datasource.filter.cleaning
Classes in elki.datasource.filter.cleaning with type parameters of type NumberVector Modifier and Type Class Description classVectorDimensionalityFilter<V extends NumberVector>Filter to remove all vectors that do not have the desired dimensionality.static classVectorDimensionalityFilter.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.datasource.filter.normalization.columnwise
Classes in elki.datasource.filter.normalization.columnwise with type parameters of type NumberVector Modifier and Type Class Description classAttributeWiseBetaNormalization<V extends NumberVector>Project the data using a Beta distribution.static classAttributeWiseBetaNormalization.Par<V extends NumberVector>Parameterization class.classAttributeWiseCDFNormalization<V extends NumberVector>Class to perform and undo a normalization on real vectors by estimating the distribution of values along each dimension independently, then rescaling objects to the cumulative density function (CDF) value at the original coordinate.static classAttributeWiseCDFNormalization.Par<V extends NumberVector>Parameterization class.classAttributeWiseMADNormalization<V extends NumberVector>Median Absolute Deviation is used for scaling the data set as follows:classAttributeWiseMeanNormalization<V extends NumberVector>Normalization designed for data with a meaningful zero:
The 0 is retained, and the data is linearly scaled to have a mean of 1, by projection with f(x) = x / mean(X).classAttributeWiseMinMaxNormalization<V extends NumberVector>Class to perform and undo a normalization on real vectors with respect to a given minimum and maximum in each dimension.static classAttributeWiseMinMaxNormalization.Par<V extends NumberVector>Parameterization class.classAttributeWiseVarianceNormalization<V extends NumberVector>Class to perform and undo a normalization on real vectors with respect to given mean and standard deviation in each dimension.static classAttributeWiseVarianceNormalization.Par<V extends NumberVector>Parameterization class.Fields in elki.datasource.filter.normalization.columnwise with type parameters of type NumberVector Modifier and Type Field Description (package private) java.util.List<? extends NumberVector>IntegerRankTieNormalization.Sorter. colColumn to use for sorting.Method parameters in elki.datasource.filter.normalization.columnwise with type arguments of type NumberVector Modifier and Type Method Description java.lang.DoubleAttributeWiseCDFNormalization.Adapter. get(java.util.List<? extends NumberVector> array, int off)doubleAttributeWiseCDFNormalization.Adapter. getDouble(java.util.List<? extends NumberVector> array, int off)longAttributeWiseCDFNormalization.Adapter. getLong(java.util.List<? extends NumberVector> array, int off)voidIntegerRankTieNormalization.Sorter. setup(java.util.List<? extends NumberVector> col, int dim)Configure the sorting class.intAttributeWiseCDFNormalization.Adapter. size(java.util.List<? extends NumberVector> array) -
Uses of NumberVector in elki.datasource.filter.normalization.instancewise
Classes in elki.datasource.filter.normalization.instancewise with type parameters of type NumberVector Modifier and Type Class Description classHellingerHistogramNormalization<V extends NumberVector>Normalize histograms by scaling them to unit absolute sum, then taking the square root of the absolute value in each attribute, times the normalization constant \(1/\sqrt{2}\).classInstanceLogRankNormalization<V extends NumberVector>Normalize vectors such that the smallest value of each instance is 0, the largest is 1, but using \( \log_2(1+x) \).classInstanceMeanVarianceNormalization<V extends NumberVector>Normalize vectors such that they have zero mean and unit variance.static classInstanceMeanVarianceNormalization.Par<V extends NumberVector>Parameterization class.classInstanceMinMaxNormalization<V extends NumberVector>Normalize vectors with respect to a given minimum and maximum in each dimension.static classInstanceMinMaxNormalization.Par<V extends NumberVector>Parameterization class.classInstanceRankNormalization<V extends NumberVector>Normalize vectors such that the smallest value of each instance is 0, the largest is 1.classLengthNormalization<V extends NumberVector>Class to perform a normalization on vectors to norm 1.static classLengthNormalization.Par<V extends NumberVector>Parameterization class.classLog1PlusNormalization<V extends NumberVector>Normalize the data set by applying \( \frac{\log(1+|x|b)}{\log 1+b} \) to any value.static classLog1PlusNormalization.Par<V extends NumberVector>Parameterization class.Fields in elki.datasource.filter.normalization.instancewise with type parameters of type NumberVector Modifier and Type Field Description static HellingerHistogramNormalization<NumberVector>HellingerHistogramNormalization. STATICStatic instance.static Log1PlusNormalization<NumberVector>Log1PlusNormalization. STATICStatic instance.Methods in elki.datasource.filter.normalization.instancewise that return types with arguments of type NumberVector Modifier and Type Method Description HellingerHistogramNormalization<NumberVector>HellingerHistogramNormalization.Par. make()InstanceLogRankNormalization<NumberVector>InstanceLogRankNormalization.Par. make()InstanceRankNormalization<NumberVector>InstanceRankNormalization.Par. make() -
Uses of NumberVector in elki.datasource.filter.transform
Classes in elki.datasource.filter.transform with type parameters of type NumberVector Modifier and Type Class Description classAbstractSupervisedProjectionVectorFilter<V extends NumberVector>Base class for supervised projection methods.static classAbstractSupervisedProjectionVectorFilter.Par<V extends NumberVector>Parameterization class.classClassicMultidimensionalScalingTransform<I,O extends NumberVector>Rescale the data set using multidimensional scaling, MDS.static classClassicMultidimensionalScalingTransform.Par<I,O extends NumberVector>Parameterization class.classFastMultidimensionalScalingTransform<I,O extends NumberVector>Rescale the data set using multidimensional scaling, MDS.static classFastMultidimensionalScalingTransform.Par<I,O extends NumberVector>Parameterization class.classGlobalPrincipalComponentAnalysisTransform<O extends NumberVector>Apply Principal Component Analysis (PCA) to the data set.static classGlobalPrincipalComponentAnalysisTransform.Par<O extends NumberVector>Parameterization class.classHistogramJitterFilter<V extends NumberVector>Add jitter, preserving the histogram properties (same sum, nonnegative).classLatLngToECEFFilter<V extends NumberVector>Project a 2D data set (latitude, longitude) to a 3D coordinate system (X, Y, Z), such that Euclidean distance is line-of-sight.static classLatLngToECEFFilter.Par<V extends NumberVector>Parameterization class.classLinearDiscriminantAnalysisFilter<V extends NumberVector>Linear Discriminant Analysis (LDA) / Fisher's linear discriminant.static classLinearDiscriminantAnalysisFilter.Par<V extends NumberVector>Parameterization class.classLngLatToECEFFilter<V extends NumberVector>Project a 2D data set (longitude, latitude) to a 3D coordinate system (X, Y, Z), such that Euclidean distance is line-of-sight.static classLngLatToECEFFilter.Par<V extends NumberVector>Parameterization class.classNumberVectorFeatureSelectionFilter<V extends NumberVector>Parser to project the ParsingResult obtained by a suitable base parser onto a selected subset of attributes.classNumberVectorRandomFeatureSelectionFilter<V extends NumberVector>Parser to project the ParsingResult obtained by a suitable base parser onto a randomly selected subset of attributes.classPerturbationFilter<V extends NumberVector>A filter to perturb the values by adding micro-noise.static classPerturbationFilter.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.datasource.filter.typeconversions
Classes in elki.datasource.filter.typeconversions with type parameters of type NumberVector Modifier and Type Class Description classSplitNumberVectorFilter<V extends NumberVector>Split an existing column into two types.static classSplitNumberVectorFilter.Par<V extends NumberVector>Parameterization class.Methods in elki.datasource.filter.typeconversions that return types with arguments of type NumberVector Modifier and Type Method Description protected SimpleTypeInformation<? super NumberVector>UncertainSplitFilter. getInputTypeRestriction()protected SimpleTypeInformation<? super NumberVector>WeightedUncertainSplitFilter. getInputTypeRestriction()Methods in elki.datasource.filter.typeconversions with parameters of type NumberVector Modifier and Type Method Description protected UnweightedDiscreteUncertainObjectUncertainSplitFilter. filterSingleObject(NumberVector vec)protected WeightedDiscreteUncertainObjectWeightedUncertainSplitFilter. filterSingleObject(NumberVector vec)Method parameters in elki.datasource.filter.typeconversions with type arguments of type NumberVector Modifier and Type Method Description protected SimpleTypeInformation<UnweightedDiscreteUncertainObject>UncertainSplitFilter. convertedType(SimpleTypeInformation<NumberVector> in)protected SimpleTypeInformation<WeightedDiscreteUncertainObject>WeightedUncertainSplitFilter. convertedType(SimpleTypeInformation<NumberVector> in) -
Uses of NumberVector in elki.datasource.parser
Classes in elki.datasource.parser with type parameters of type NumberVector Modifier and Type Class Description classCategorialDataAsNumberVectorParser<V extends NumberVector>A very simple parser for categorial data, which will then be encoded as numbers.static classCategorialDataAsNumberVectorParser.Par<V extends NumberVector>Parameterization class.classNumberVectorLabelParser<V extends NumberVector>Parser for a simple CSV type of format, with columns separated by the given pattern (default: whitespace).static classNumberVectorLabelParser.Par<V extends NumberVector>Parameterization class.Fields in elki.datasource.parser declared as NumberVector Modifier and Type Field Description protected VNumberVectorLabelParser. curvecCurrent vector. -
Uses of NumberVector in elki.distance
Methods in elki.distance that return types with arguments of type NumberVector Modifier and Type Method Description SimpleTypeInformation<? super NumberVector>AbstractNumberVectorDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>ArcCosineDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>ArcCosineUnitlengthDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>CanberraDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>ClarkDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>CosineDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>CosineUnitlengthDistance. getInputTypeRestriction()VectorFieldTypeInformation<? super NumberVector>MatrixWeightedQuadraticDistance. getInputTypeRestriction()Methods in elki.distance with parameters of type NumberVector Modifier and Type Method Description static intAbstractNumberVectorDistance. dimensionality(NumberVector o1, NumberVector o2)Get the common dimensionality of the two objects.static intAbstractNumberVectorDistance. dimensionality(NumberVector o1, NumberVector o2, int expect)Get the common dimensionality of the two objects.doubleArcCosineDistance. distance(NumberVector v1, NumberVector v2)doubleArcCosineUnitlengthDistance. distance(NumberVector v1, NumberVector v2)doubleBrayCurtisDistance. distance(NumberVector v1, NumberVector v2)doubleCanberraDistance. distance(NumberVector v1, NumberVector v2)doubleClarkDistance. distance(NumberVector v1, NumberVector v2)doubleCosineDistance. distance(NumberVector v1, NumberVector v2)doubleCosineUnitlengthDistance. distance(NumberVector v1, NumberVector v2)doubleMahalanobisDistance. distance(NumberVector o1, NumberVector o2)doubleMatrixWeightedQuadraticDistance. distance(NumberVector o1, NumberVector o2)doubleNumberVectorDistance. distance(NumberVector o1, NumberVector o2)Computes the distance between two given vectors according to this distance function.doubleSqrtCosineDistance. distance(NumberVector v1, NumberVector v2)doubleSqrtCosineUnitlengthDistance. distance(NumberVector v1, NumberVector v2)doubleWeightedCanberraDistance. distance(NumberVector v1, NumberVector v2)doubleMahalanobisDistance. norm(NumberVector obj)doubleMatrixWeightedQuadraticDistance. norm(NumberVector obj) -
Uses of NumberVector in elki.distance.colorhistogram
Methods in elki.distance.colorhistogram with parameters of type NumberVector Modifier and Type Method Description doubleHistogramIntersectionDistance. distance(NumberVector v1, NumberVector v2) -
Uses of NumberVector in elki.distance.correlation
Methods in elki.distance.correlation with parameters of type NumberVector Modifier and Type Method Description doubleAbsolutePearsonCorrelationDistance. distance(NumberVector v1, NumberVector v2)Computes the absolute Pearson correlation distance for two given feature vectors.doubleAbsoluteUncenteredCorrelationDistance. distance(NumberVector v1, NumberVector v2)doublePearsonCorrelationDistance. distance(NumberVector v1, NumberVector v2)Computes the Pearson correlation distance for two given feature vectors.doubleSquaredPearsonCorrelationDistance. distance(NumberVector v1, NumberVector v2)doubleSquaredUncenteredCorrelationDistance. distance(NumberVector v1, NumberVector v2)doubleUncenteredCorrelationDistance. distance(NumberVector v1, NumberVector v2)Computes the Pearson correlation distance for two given feature vectors.doubleWeightedPearsonCorrelationDistance. distance(NumberVector v1, NumberVector v2)Computes the Pearson correlation distance for two given feature vectors.doubleWeightedSquaredPearsonCorrelationDistance. distance(NumberVector v1, NumberVector v2)static doubleUncenteredCorrelationDistance. uncenteredCorrelation(NumberVector x, NumberVector y)Compute the uncentered correlation of two vectors. -
Uses of NumberVector in elki.distance.geo
Methods in elki.distance.geo that return types with arguments of type NumberVector Modifier and Type Method Description SimpleTypeInformation<? super NumberVector>DimensionSelectingLatLngDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>LatLngDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>LngLatDistance. getInputTypeRestriction()Methods in elki.distance.geo with parameters of type NumberVector Modifier and Type Method Description doubleDimensionSelectingLatLngDistance. distance(NumberVector o1, NumberVector o2)doubleLatLngDistance. distance(NumberVector o1, NumberVector o2)doubleLngLatDistance. distance(NumberVector o1, NumberVector o2) -
Uses of NumberVector in elki.distance.histogram
Methods in elki.distance.histogram with parameters of type NumberVector Modifier and Type Method Description doubleHistogramMatchDistance. distance(NumberVector v1, NumberVector v2)doubleKolmogorovSmirnovDistance. distance(NumberVector v1, NumberVector v2) -
Uses of NumberVector in elki.distance.minkowski
Methods in elki.distance.minkowski that return types with arguments of type NumberVector Modifier and Type Method Description SimpleTypeInformation<? super NumberVector>LPNormDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>SquaredEuclideanDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>WeightedLPNormDistance. getInputTypeRestriction()Methods in elki.distance.minkowski with parameters of type NumberVector Modifier and Type Method Description doubleEuclideanDistance. distance(NumberVector v1, NumberVector v2)doubleLPIntegerNormDistance. distance(NumberVector v1, NumberVector v2)doubleLPNormDistance. distance(NumberVector v1, NumberVector v2)doubleManhattanDistance. distance(NumberVector v1, NumberVector v2)doubleMaximumDistance. distance(NumberVector v1, NumberVector v2)doubleMinimumDistance. distance(NumberVector v1, NumberVector v2)doubleSquaredEuclideanDistance. distance(NumberVector v1, NumberVector v2)doubleWeightedEuclideanDistance. distance(NumberVector v1, NumberVector v2)doubleWeightedLPNormDistance. distance(NumberVector v1, NumberVector v2)doubleWeightedManhattanDistance. distance(NumberVector v1, NumberVector v2)doubleWeightedMaximumDistance. distance(NumberVector v1, NumberVector v2)doubleWeightedSquaredEuclideanDistance. distance(NumberVector v1, NumberVector v2)doubleEuclideanDistance. norm(NumberVector v)doubleLPIntegerNormDistance. norm(NumberVector v)doubleLPNormDistance. norm(NumberVector v)doubleManhattanDistance. norm(NumberVector v)doubleMaximumDistance. norm(NumberVector v)doubleMinimumDistance. norm(NumberVector v)doubleSquaredEuclideanDistance. norm(NumberVector v)doubleWeightedEuclideanDistance. norm(NumberVector v)doubleWeightedLPNormDistance. norm(NumberVector v)doubleWeightedManhattanDistance. norm(NumberVector v)doubleWeightedMaximumDistance. norm(NumberVector v)doubleWeightedSquaredEuclideanDistance. norm(NumberVector obj)private doubleEuclideanDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleLPIntegerNormDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)Compute unscaled distance in a range of dimensions.private doubleLPNormDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)Compute unscaled distance in a range of dimensions.private doubleManhattanDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleMaximumDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleSquaredEuclideanDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleWeightedEuclideanDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleWeightedLPNormDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleWeightedManhattanDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleWeightedMaximumDistance. preDistance(NumberVector v1, NumberVector v2, int start, int end)private doubleEuclideanDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleLPIntegerNormDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)Compute unscaled distance in a range of dimensions.private doubleLPNormDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)Compute unscaled distance in a range of dimensions.private doubleManhattanDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleMaximumDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleSquaredEuclideanDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleWeightedEuclideanDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleWeightedLPNormDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleWeightedManhattanDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleWeightedMaximumDistance. preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end)private doubleEuclideanDistance. preNorm(NumberVector v, int start, int end)private doubleLPIntegerNormDistance. preNorm(NumberVector v, int start, int end)Compute unscaled norm in a range of dimensions.private doubleLPNormDistance. preNorm(NumberVector v, int start, int end)Compute unscaled norm in a range of dimensions.private doubleManhattanDistance. preNorm(NumberVector v, int start, int end)private doubleMaximumDistance. preNorm(NumberVector v, int start, int end)private doubleSquaredEuclideanDistance. preNorm(NumberVector v, int start, int end)private doubleWeightedEuclideanDistance. preNorm(NumberVector v, int start, int end)private doubleWeightedLPNormDistance. preNorm(NumberVector v, int start, int end)private doubleWeightedManhattanDistance. preNorm(NumberVector v, int start, int end)private doubleWeightedMaximumDistance. preNorm(NumberVector v, int start, int end) -
Uses of NumberVector in elki.distance.probabilistic
Methods in elki.distance.probabilistic with type parameters of type NumberVector Modifier and Type Method Description <T extends NumberVector>
SpatialPrimitiveDistanceSimilarityQuery<T>HellingerDistance. instantiate(Relation<T> database)Methods in elki.distance.probabilistic that return types with arguments of type NumberVector Modifier and Type Method Description SimpleTypeInformation<? super NumberVector>ChiSquaredDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>FisherRaoDistance. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>HellingerDistance. getInputTypeRestriction()Methods in elki.distance.probabilistic with parameters of type NumberVector Modifier and Type Method Description doubleChiDistance. distance(NumberVector v1, NumberVector v2)doubleChiSquaredDistance. distance(NumberVector v1, NumberVector v2)doubleFisherRaoDistance. distance(NumberVector fv1, NumberVector fv2)doubleHellingerDistance. distance(NumberVector fv1, NumberVector fv2)doubleJeffreyDivergenceDistance. distance(NumberVector v1, NumberVector v2)doubleJensenShannonDivergenceDistance. distance(NumberVector v1, NumberVector v2)doubleKullbackLeiblerDivergenceAsymmetricDistance. distance(NumberVector v1, NumberVector v2)doubleKullbackLeiblerDivergenceReverseAsymmetricDistance. distance(NumberVector v1, NumberVector v2)doubleSqrtJensenShannonDivergenceDistance. distance(NumberVector v1, NumberVector v2)doubleTriangularDiscriminationDistance. distance(NumberVector v1, NumberVector v2)doubleTriangularDistance. distance(NumberVector v1, NumberVector v2)doubleHellingerDistance. similarity(NumberVector o1, NumberVector o2) -
Uses of NumberVector in elki.distance.set
Methods in elki.distance.set with parameters of type NumberVector Modifier and Type Method Description doubleHammingDistance. distance(NumberVector o1, NumberVector o2)doubleJaccardSimilarityDistance. distance(NumberVector o1, NumberVector o2)private doubleHammingDistance. hammingDistanceNumberVector(NumberVector o1, NumberVector o2)Version for number vectors.static doubleJaccardSimilarityDistance. similarityNumberVector(NumberVector o1, NumberVector o2)Compute Jaccard similarity for two number vectors. -
Uses of NumberVector in elki.distance.subspace
Methods in elki.distance.subspace with type parameters of type NumberVector Modifier and Type Method Description <T extends NumberVector>
SpatialPrimitiveDistanceQuery<T>SubspaceLPNormDistance. instantiate(Relation<T> database)Methods in elki.distance.subspace that return types with arguments of type NumberVector Modifier and Type Method Description VectorTypeInformation<? super NumberVector>OnedimensionalDistance. getInputTypeRestriction()VectorFieldTypeInformation<? super NumberVector>SubspaceLPNormDistance. getInputTypeRestriction()Methods in elki.distance.subspace with parameters of type NumberVector Modifier and Type Method Description doubleOnedimensionalDistance. distance(NumberVector v1, NumberVector v2)doubleSubspaceEuclideanDistance. distance(NumberVector v1, NumberVector v2)Constructor.doubleSubspaceLPNormDistance. distance(NumberVector v1, NumberVector v2)doubleSubspaceManhattanDistance. distance(NumberVector v1, NumberVector v2)doubleSubspaceMaximumDistance. distance(NumberVector v1, NumberVector v2)protected doubleSubspaceEuclideanDistance. minDistObject(SpatialComparable mbr, NumberVector v)protected doubleSubspaceLPNormDistance. minDistObject(SpatialComparable mbr, NumberVector v)protected doubleSubspaceManhattanDistance. minDistObject(SpatialComparable mbr, NumberVector v)protected doubleSubspaceMaximumDistance. minDistObject(SpatialComparable mbr, NumberVector v)doubleOnedimensionalDistance. norm(NumberVector obj)doubleSubspaceEuclideanDistance. norm(NumberVector obj)doubleSubspaceLPNormDistance. norm(NumberVector obj)doubleSubspaceManhattanDistance. norm(NumberVector obj)doubleSubspaceMaximumDistance. norm(NumberVector obj) -
Uses of NumberVector in elki.distance.timeseries
Methods in elki.distance.timeseries that return types with arguments of type NumberVector Modifier and Type Method Description VectorTypeInformation<? super NumberVector>AbstractEditDistance. getInputTypeRestriction()VectorTypeInformation<? super NumberVector>LCSSDistance. getInputTypeRestriction()Methods in elki.distance.timeseries with parameters of type NumberVector Modifier and Type Method Description protected doubleDerivativeDTWDistance. derivative(int i, NumberVector v)Given a NumberVector and the position of an element, approximates the gradient of given element.doubleDerivativeDTWDistance. distance(NumberVector v1, NumberVector v2)doubleDTWDistance. distance(NumberVector v1, NumberVector v2)doubleEDRDistance. distance(NumberVector v1, NumberVector v2)doubleERPDistance. distance(NumberVector v1, NumberVector v2)doubleLCSSDistance. distance(NumberVector v1, NumberVector v2)protected voidDerivativeDTWDistance. firstRow(double[] buf, int band, NumberVector v1, NumberVector v2, int dim2)protected voidDTWDistance. firstRow(double[] buf, int band, NumberVector v1, NumberVector v2, int dim2)Fill the first row.protected voidERPDistance. firstRow(double[] buf, int band, NumberVector v1, NumberVector v2, int dim2)doubleLCSSDistance. getRange(NumberVector v1, int dim1, NumberVector v2, int dim2) -
Uses of NumberVector in elki.evaluation.clustering.internal
Fields in elki.evaluation.clustering.internal with type parameters of type NumberVector Modifier and Type Field Description private PrimitiveDistance<? super NumberVector>ConcordantPairsGammaTau. distanceDistance function to use.private PrimitiveDistance<NumberVector>ConcordantPairsGammaTau.Par. distanceDistance function to use.Methods in elki.evaluation.clustering.internal with parameters of type NumberVector Modifier and Type Method Description static intSimplifiedSilhouette. centroids(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)Compute centroids.static intVarianceRatioCriterion. globalCentroid(Centroid overallCentroid, Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)Update the global centroid.double[]DaviesBouldinIndex. withinGroupDistances(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids)Method parameters in elki.evaluation.clustering.internal with type arguments of type NumberVector Modifier and Type Method Description static intSimplifiedSilhouette. centroids(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)Compute centroids.protected double[]ConcordantPairsGammaTau. computeWithinDistances(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, int withinPairs)doubleClusterRadius. evaluateClustering(Database db, Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleConcordantPairsGammaTau. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleDaviesBouldinIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doublePBMIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleSimplifiedSilhouette. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleSquaredErrors. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleVarianceRatioCriterion. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.static intVarianceRatioCriterion. globalCentroid(Centroid overallCentroid, Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)Update the global centroid.double[]DaviesBouldinIndex. withinGroupDistances(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids)Constructor parameters in elki.evaluation.clustering.internal with type arguments of type NumberVector Constructor Description ConcordantPairsGammaTau(PrimitiveDistance<? super NumberVector> distance, NoiseHandling noiseHandling)Constructor. -
Uses of NumberVector in elki.evaluation.scores.adapter
Fields in elki.evaluation.scores.adapter declared as NumberVector Modifier and Type Field Description protected NumberVectorAbstractVectorIter. positiveVector of positive examples.protected NumberVectorAbstractVectorIter. vecData vector.Constructors in elki.evaluation.scores.adapter with parameters of type NumberVector Constructor Description AbstractVectorIter(NumberVector positive, NumberVector vec)Constructor.DecreasingVectorIter(NumberVector positive, NumberVector vec)Constructor.IncreasingVectorIter(NumberVector positive, NumberVector vec)Constructor. -
Uses of NumberVector in elki.index.invertedlist
Classes in elki.index.invertedlist with type parameters of type NumberVector Modifier and Type Class Description classInMemoryInvertedIndex<V extends NumberVector>Simple index using inverted lists, for cosine distance only.static classInMemoryInvertedIndex.Factory<V extends NumberVector>Index factorystatic classInMemoryInvertedIndex.Factory.Par<V extends NumberVector>Parameterizer for inverted list index.Methods in elki.index.invertedlist with parameters of type NumberVector Modifier and Type Method Description private doubleInMemoryInvertedIndex. naiveQueryDense(NumberVector obj, WritableDoubleDataStore scores, HashSetModifiableDBIDs cands)Query the most similar objects, dense version. -
Uses of NumberVector in elki.index.lsh.hashfamilies
Methods in elki.index.lsh.hashfamilies that return types with arguments of type NumberVector Modifier and Type Method Description java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>AbstractProjectedHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l)java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>CosineHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l)Method parameters in elki.index.lsh.hashfamilies with type arguments of type NumberVector Modifier and Type Method Description java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>AbstractProjectedHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l)java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>CosineHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l) -
Uses of NumberVector in elki.index.lsh.hashfunctions
Methods in elki.index.lsh.hashfunctions with parameters of type NumberVector Modifier and Type Method Description intCosineLocalitySensitiveHashFunction. hashObject(NumberVector obj)intCosineLocalitySensitiveHashFunction. hashObject(NumberVector obj, double[] buf)intMultipleProjectionsLocalitySensitiveHashFunction. hashObject(NumberVector vec)intMultipleProjectionsLocalitySensitiveHashFunction. hashObject(NumberVector vec, double[] buf) -
Uses of NumberVector in elki.index.preprocessed.fastoptics
Fields in elki.index.preprocessed.fastoptics with type parameters of type NumberVector Modifier and Type Field Description (package private) Relation<? extends NumberVector>RandomProjectedNeighborsAndDensities. pointsentire point setMethod parameters in elki.index.preprocessed.fastoptics with type arguments of type NumberVector Modifier and Type Method Description voidRandomProjectedNeighborsAndDensities. computeSetsBounds(Relation<? extends NumberVector> points, int minSplitSize, DBIDs ptList)Create random projections, project points and put points into sets of size about minSplitSize/2 -
Uses of NumberVector in elki.index.preprocessed.knn
Classes in elki.index.preprocessed.knn with type parameters of type NumberVector Modifier and Type Class Description classMetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.static classMetricalIndexApproximationMaterializeKNNPreprocessor.Factory<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>The parameterizable factory.static classMetricalIndexApproximationMaterializeKNNPreprocessor.Factory.Par<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>Parameterization class.classNaiveProjectedKNNPreprocessor<O extends NumberVector>Compute the approximate k nearest neighbors using 1 dimensional projections.static classNaiveProjectedKNNPreprocessor.Factory<V extends NumberVector>Index factory classclassSpacefillingKNNPreprocessor<O extends NumberVector>Compute the nearest neighbors approximatively using space filling curves.static classSpacefillingKNNPreprocessor.Factory<V extends NumberVector>Index factory classclassSpacefillingMaterializeKNNPreprocessor<O extends NumberVector>Compute the nearest neighbors approximatively using space filling curves.static classSpacefillingMaterializeKNNPreprocessor.Factory<V extends NumberVector>Index factory classstatic classSpacefillingMaterializeKNNPreprocessor.Factory.Par<V extends NumberVector>Parameterization class.classSpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector>A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.Fields in elki.index.preprocessed.knn with type parameters of type NumberVector Modifier and Type Field Description (package private) java.util.List<java.util.List<SpatialPair<DBID,NumberVector>>>SpacefillingKNNPreprocessor. curvesCurve storageMethods in elki.index.preprocessed.knn that return types with arguments of type NumberVector Modifier and Type Method Description SpatialApproximationMaterializeKNNPreprocessor<NumberVector>SpatialApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<NumberVector> relation)Method parameters in elki.index.preprocessed.knn with type arguments of type NumberVector Modifier and Type Method Description SpatialApproximationMaterializeKNNPreprocessor<NumberVector>SpatialApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<NumberVector> relation)Constructor parameters in elki.index.preprocessed.knn with type arguments of type NumberVector Constructor Description Factory(int k, Distance<? super NumberVector> distance)Constructor. -
Uses of NumberVector in elki.index.projected
Classes in elki.index.projected with type parameters of type NumberVector Modifier and Type Class Description classLatLngAsECEFIndex<O extends NumberVector>Index a 2d data set (consisting of Lat/Lng pairs) by using a projection to 3D coordinates (WGS-86 to ECEF).static classLatLngAsECEFIndex.Factory<O extends NumberVector>Index factory.static classLatLngAsECEFIndex.Factory.Par<O extends NumberVector>Parameterization class.classLngLatAsECEFIndex<O extends NumberVector>Index a 2d data set (consisting of Lng/Lat pairs) by using a projection to 3D coordinates (WGS-86 to ECEF).static classLngLatAsECEFIndex.Factory<O extends NumberVector>Index factory.static classLngLatAsECEFIndex.Factory.Par<O extends NumberVector>Parameterization class.classPINN<O extends NumberVector>Projection-Indexed nearest-neighbors (PINN) is an index to retrieve the nearest neighbors in high dimensional spaces by using a random projection based index.static classPINN.Par<O extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.index.tree.betula
Methods in elki.index.tree.betula with parameters of type NumberVector Modifier and Type Method Description LCFTree. findLeaf(NumberVector nv)Find the leaf of a cluster, to get the final cluster assignment.private LCFTree. findLeaf(CFNode<L> node, NumberVector nv)Find the leaf of a cluster, to get the final cluster assignment.voidCFTree. insert(NumberVector nv, DBIDRef dbid)Insert a data point into the tree.private CFNode<L>CFTree. insert(CFNode<L> node, NumberVector nv, DBIDRef dbid)Recursive insertion.private doubleCFTree. sqabsorption(NumberVector nv, ClusterFeature cf)Updates statistics and calculates distance between a Number Vector and a Cluster Feature based on selected criteria.private doubleCFTree. sqdistance(NumberVector nv, ClusterFeature cf)Updates statistics and calculates distance between a Number Vector and a Cluster Feature based on selected criteria.Method parameters in elki.index.tree.betula with type arguments of type NumberVector Modifier and Type Method Description CFTree<L>CFTree.Factory. newTree(DBIDs ids, Relation<? extends NumberVector> relation, boolean storeIds)Make a new tree. -
Uses of NumberVector in elki.index.tree.betula.distance
Methods in elki.index.tree.betula.distance with parameters of type NumberVector Modifier and Type Method Description doubleAverageInterclusterDistance. squaredDistance(NumberVector nv, ClusterFeature cf)doubleAverageIntraclusterDistance. squaredDistance(NumberVector nv, ClusterFeature cf1)doubleBIRCHAverageInterclusterDistance. squaredDistance(NumberVector v, ClusterFeature ocf)doubleBIRCHAverageIntraclusterDistance. squaredDistance(NumberVector v, ClusterFeature ocf)doubleBIRCHRadiusDistance. squaredDistance(NumberVector n, ClusterFeature ocf)doubleBIRCHVarianceIncreaseDistance. squaredDistance(NumberVector v, ClusterFeature ocf)doubleCentroidEuclideanDistance. squaredDistance(NumberVector v, ClusterFeature cf)doubleCentroidManhattanDistance. squaredDistance(NumberVector v, ClusterFeature cf)doubleCFDistance. squaredDistance(NumberVector v, ClusterFeature cf)Distance of a vector to a clustering feature.doubleRadiusDistance. squaredDistance(NumberVector nv, ClusterFeature cf1)doubleVarianceIncreaseDistance. squaredDistance(NumberVector nv, ClusterFeature cf) -
Uses of NumberVector in elki.index.tree.betula.features
Subinterfaces of NumberVector in elki.index.tree.betula.features Modifier and Type Interface Description interfaceClusterFeatureInterface for basic ClusteringFeature functionsClasses in elki.index.tree.betula.features that implement NumberVector Modifier and Type Class Description classBIRCHCFClustering Feature of BIRCH, only for comparisonclassVIIFeatureClustering Feature of stable BIRCH with a single variance per cluster featureclassVVIFeatureClustering Feature of stable BIRCH with variance per dimensionclassVVVFeatureClustering Feature of stable BIRCH with covariance instead of varianceMethods in elki.index.tree.betula.features with parameters of type NumberVector Modifier and Type Method Description voidBIRCHCF. addToStatistics(NumberVector nv)voidClusterFeature. addToStatistics(NumberVector nv)Add NumberVector to CFvoidVIIFeature. addToStatistics(NumberVector nv)voidVVIFeature. addToStatistics(NumberVector nv)voidVVVFeature. addToStatistics(NumberVector nv)static doubleBIRCHCF. sumOfSquares(NumberVector v)Compute the sum of squares of a vector. -
Uses of NumberVector in elki.index.tree.metrical.vptree
Classes in elki.index.tree.metrical.vptree with type parameters of type NumberVector Modifier and Type Class Description static classGNAT.Factory<O extends NumberVector>Index Factorystatic classGNAT.Factory.Par<O extends NumberVector>Parameterization class.static classVPTree.Factory<O extends NumberVector>Index factory for the VP-Treestatic classVPTree.Factory.Par<O extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.index.tree.spatial
Classes in elki.index.tree.spatial that implement NumberVector Modifier and Type Class Description classSpatialPointLeafEntryRepresents an entry in a leaf node of a spatial index.Constructors in elki.index.tree.spatial with parameters of type NumberVector Constructor Description SpatialPointLeafEntry(DBID id, NumberVector vector)Constructor from number vector. -
Uses of NumberVector in elki.index.tree.spatial.kd
Classes in elki.index.tree.spatial.kd with type parameters of type NumberVector Modifier and Type Class Description classMemoryKDTree<O extends NumberVector>Implementation of a static in-memory K-D-tree.static classMemoryKDTree.Factory<O extends NumberVector>Factory classstatic classMemoryKDTree.Factory.Par<O extends NumberVector>Parameterization class.classMinimalisticMemoryKDTree<O extends NumberVector>Simple implementation of a static in-memory K-D-tree.static classMinimalisticMemoryKDTree.Factory<O extends NumberVector>Factory classstatic classMinimalisticMemoryKDTree.Factory.Par<O extends NumberVector>Parameterization class.classSmallMemoryKDTree<O extends NumberVector>Simple implementation of a static in-memory K-D-tree.static classSmallMemoryKDTree.Factory<O extends NumberVector>Factory classstatic classSmallMemoryKDTree.Factory.Par<O extends NumberVector>Parameterization class.Fields in elki.index.tree.spatial.kd declared as NumberVector Modifier and Type Field Description private OMemoryKDTree.KDTreePrioritySearcher. queryCurrent query object.private OMinimalisticMemoryKDTree.KDTreePrioritySearcher. queryCurrent query object.private OSmallMemoryKDTree.KDTreePrioritySearcher. queryCurrent query object.Methods in elki.index.tree.spatial.kd with parameters of type NumberVector Modifier and Type Method Description doublePartialEuclideanDistance. distance(NumberVector a, NumberVector b)doublePartialLPNormDistance. distance(NumberVector a, NumberVector b)doublePartialManhattanDistance. distance(NumberVector a, NumberVector b)doublePartialSquaredEuclideanDistance. distance(NumberVector a, NumberVector b)Method parameters in elki.index.tree.spatial.kd with type arguments of type NumberVector Modifier and Type Method Description java.lang.ObjectMemoryKDTree. buildTree(Relation<? extends NumberVector> relation, int left, int right, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d tree.Constructor parameters in elki.index.tree.spatial.kd with type arguments of type NumberVector Constructor Description CountSortAccesses(Counter objaccess, Relation<? extends NumberVector> data)Constructor. -
Uses of NumberVector in elki.index.tree.spatial.kd.split
Method parameters in elki.index.tree.spatial.kd.split with type arguments of type NumberVector Modifier and Type Method Description SplitStrategy.InfoBoundedMidpointSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoLeastOneDimSSQSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoLeastSSQSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMeanVarianceSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMedianSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMedianVarianceSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMidpointSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoSplitStrategy. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using midpoint splitting.(package private) static double[]SplitStrategy.Util. minmaxRange(int dims, Relation<? extends NumberVector> relation, DBIDArrayIter iter, int left, int right)Find the minimum and maximum in each dimension of a range of values.(package private) static intSplitStrategy.Util. pivot(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int dim, int left, int right, double mid)Pivot an interval.(package private) static double[]SplitStrategy.Util. sumvar(Relation<? extends NumberVector> relation, int dims, DBIDArrayMIter iter, int left, int right)Compute the sum and sum-of-squares (for variance). -
Uses of NumberVector in elki.index.tree.spatial.rstarvariants
Classes in elki.index.tree.spatial.rstarvariants with type parameters of type NumberVector Modifier and Type Class Description classAbstractRStarTreeFactory<O extends NumberVector,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,S extends RTreeSettings>Abstract factory for R*-Tree based trees.static classAbstractRStarTreeFactory.Par<O extends NumberVector,S extends RTreeSettings>Parameterization class. -
Uses of NumberVector in elki.index.tree.spatial.rstarvariants.deliclu
Classes in elki.index.tree.spatial.rstarvariants.deliclu with type parameters of type NumberVector Modifier and Type Class Description classDeLiCluTreeFactory<O extends NumberVector>Factory for DeLiClu R*-Trees.static classDeLiCluTreeFactory.Par<O extends NumberVector>Parameterization class.classDeLiCluTreeIndex<O extends NumberVector>The common use of the DeLiClu tree: indexing number vectors.Classes in elki.index.tree.spatial.rstarvariants.deliclu that implement NumberVector Modifier and Type Class Description classDeLiCluLeafEntryDefines the requirements for a leaf entry in an DeLiClu-Tree node.Constructors in elki.index.tree.spatial.rstarvariants.deliclu with parameters of type NumberVector Constructor Description DeLiCluLeafEntry(DBID id, NumberVector vector)Constructs a new LeafEntry object with the given parameters. -
Uses of NumberVector in elki.index.tree.spatial.rstarvariants.flat
Classes in elki.index.tree.spatial.rstarvariants.flat with type parameters of type NumberVector Modifier and Type Class Description classFlatRStarTreeFactory<O extends NumberVector>Factory for flat R*-Trees.static classFlatRStarTreeFactory.Par<O extends NumberVector>Parameterization class.classFlatRStarTreeIndex<O extends NumberVector>The common use of the flat rstar tree: indexing number vectors. -
Uses of NumberVector in elki.index.tree.spatial.rstarvariants.query
Classes in elki.index.tree.spatial.rstarvariants.query with type parameters of type NumberVector Modifier and Type Class Description classEuclideanRStarTreeKNNQuery<O extends NumberVector>Instance of a KNN query for a particular spatial index.classEuclideanRStarTreeRangeQuery<O extends NumberVector>Instance of a range query for a particular spatial index. -
Uses of NumberVector in elki.index.tree.spatial.rstarvariants.rdknn
Classes in elki.index.tree.spatial.rstarvariants.rdknn with type parameters of type NumberVector Modifier and Type Class Description classRdKNNTree<O extends NumberVector>RDkNNTree is a spatial index structure based on the concepts of the R*-Tree supporting efficient processing of reverse k nearest neighbor queries.classRdKNNTreeFactory<O extends NumberVector>Factory for RdKNN R*-Trees.static classRdKNNTreeFactory.Par<O extends NumberVector>Parameterization class.Classes in elki.index.tree.spatial.rstarvariants.rdknn that implement NumberVector Modifier and Type Class Description classRdKNNLeafEntryRepresents an entry in a leaf node of an RdKNN-Tree.Fields in elki.index.tree.spatial.rstarvariants.rdknn with type parameters of type NumberVector Modifier and Type Field Description (package private) SpatialPrimitiveDistance<NumberVector>RdkNNSettings. distanceThe distance function.Constructors in elki.index.tree.spatial.rstarvariants.rdknn with parameters of type NumberVector Constructor Description RdKNNLeafEntry(DBID id, NumberVector vector, double knnDistance)Constructs a new RDkNNLeafEntry object with the given parameters.Constructor parameters in elki.index.tree.spatial.rstarvariants.rdknn with type arguments of type NumberVector Constructor Description RdkNNSettings(int k_max, SpatialPrimitiveDistance<NumberVector> distance)Constructor. -
Uses of NumberVector in elki.index.tree.spatial.rstarvariants.rstar
Classes in elki.index.tree.spatial.rstarvariants.rstar with type parameters of type NumberVector Modifier and Type Class Description classRStarTreeFactory<O extends NumberVector>Factory for regular R*-Trees.static classRStarTreeFactory.Par<O extends NumberVector>Parameterization class.classRStarTreeIndex<O extends NumberVector>The common use of the rstar tree: indexing number vectors. -
Uses of NumberVector in elki.index.vafile
Classes in elki.index.vafile with type parameters of type NumberVector Modifier and Type Class Description classPartialVAFile<V extends NumberVector>PartialVAFile.static classPartialVAFile.Factory<V extends NumberVector>Index factory class.classVAFile<V extends NumberVector>Vector-approximation file (VAFile)static classVAFile.Factory<V extends NumberVector>Index factory class.Methods in elki.index.vafile with parameters of type NumberVector Modifier and Type Method Description protected static VectorApproximationPartialVAFile. calculatePartialApproximation(NumberVector dv, java.util.List<DoubleObjPair<DAFile>> daFiles)Calculate partial vector approximation.protected static voidPartialVAFile. calculateSelectivityCoeffs(java.util.List<DoubleObjPair<DAFile>> daFiles, NumberVector query, double epsilon)Calculate selectivity coefficients.private voidVALPNormDistance. initializeLookupTable(double[][] splitPositions, NumberVector query, double p)Initialize the lookup table.Constructors in elki.index.vafile with parameters of type NumberVector Constructor Description VALPNormDistance(double p, double[][] splitPositions, NumberVector query, VectorApproximation queryApprox)Constructor.Constructor parameters in elki.index.vafile with type arguments of type NumberVector Constructor Description DAFile(Relation<? extends NumberVector> relation, int dimension, int partitions)Constructor. -
Uses of NumberVector in elki.math
Methods in elki.math with parameters of type NumberVector Modifier and Type Method Description static doublePearsonCorrelation. coefficient(NumberVector x, NumberVector y)Compute the Pearson product-moment correlation coefficient for two NumberVectors.static doublePearsonCorrelation. weightedCoefficient(NumberVector x, NumberVector y, double[] weights)Compute the Pearson product-moment correlation coefficient for two NumberVectors.static doublePearsonCorrelation. weightedCoefficient(NumberVector x, NumberVector y, NumberVector weights)Compute the Pearson product-moment correlation coefficient,Method parameters in elki.math with type arguments of type NumberVector Modifier and Type Method Description static MeanVariance[]MeanVariance. of(Relation<? extends NumberVector> relation)Compute the variances of a relation. -
Uses of NumberVector in elki.math.linearalgebra
Classes in elki.math.linearalgebra that implement NumberVector Modifier and Type Class Description classCentroidClass to compute the centroid of some data.classProjectedCentroidCentroid only using a subset of dimensions.Methods in elki.math.linearalgebra with type parameters of type NumberVector Modifier and Type Method Description <F extends NumberVector>
FCovarianceMatrix. getMeanVector(Relation<? extends F> relation)Get the mean as vector.Methods in elki.math.linearalgebra with parameters of type NumberVector Modifier and Type Method Description voidCentroid. put(NumberVector val)Add a single value with weight 1.0.voidCentroid. put(NumberVector val, double weight)Add data with a given weight.voidCovarianceMatrix. put(NumberVector val)Add a single value with weight 1.0.voidCovarianceMatrix. put(NumberVector val, double weight)Add data with a given weight.voidProjectedCentroid. put(NumberVector val)Add a single value with weight 1.0.voidProjectedCentroid. put(NumberVector val, double weight)Add data with a given weight.Method parameters in elki.math.linearalgebra with type arguments of type NumberVector Modifier and Type Method Description static CentroidCentroid. make(Relation<? extends NumberVector> relation, DBIDs ids)Static constructor from an existing relation.static CovarianceMatrixCovarianceMatrix. make(Relation<? extends NumberVector> relation)Static Constructor from a full relation.static CovarianceMatrixCovarianceMatrix. make(Relation<? extends NumberVector> relation, DBIDs ids)Static Constructor from a full relation.static ProjectedCentroidProjectedCentroid. make(long[] dims, Relation<? extends NumberVector> relation)Static Constructor from a relation.static ProjectedCentroidProjectedCentroid. make(long[] dims, Relation<? extends NumberVector> relation, DBIDs ids)Static Constructor from a relation. -
Uses of NumberVector in elki.math.linearalgebra.pca
Fields in elki.math.linearalgebra.pca with type parameters of type NumberVector Modifier and Type Field Description private PrimitiveDistance<? super NumberVector>WeightedCovarianceMatrixBuilder. weightDistanceHolds the distance function used for weight calculation.Method parameters in elki.math.linearalgebra.pca with type arguments of type NumberVector Modifier and Type Method Description PCAResultAutotuningPCA. processIds(DBIDs ids, Relation<? extends NumberVector> database)double[][]CovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> database)Compute covariance matrix for a collection of database IDs.PCAResultPCARunner. processIds(DBIDs ids, Relation<? extends NumberVector> database)Run PCA on a collection of database IDs.double[][]RANSACCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> relation)double[][]StandardCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> database)Compute Covariance Matrix for a collection of database IDs.double[][]WeightedCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> relation)Weighted Covariance Matrix for a set of IDs.PCAResultAutotuningPCA. processQueryResult(DoubleDBIDList results, Relation<? extends NumberVector> database)PCAResultPCARunner. processQueryResult(DoubleDBIDList results, Relation<? extends NumberVector> database)Run PCA on a QueryResult Collection.default double[][]CovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database)Compute covariance matrix for a QueryResult Collection.default double[][]CovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database, int k)Compute covariance matrix for a QueryResult collection.double[][]WeightedCovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database, int k)Compute Covariance Matrix for a QueryResult Collection.default double[][]CovarianceMatrixBuilder. processRelation(Relation<? extends NumberVector> relation)Compute covariance matrix for a complete relation. -
Uses of NumberVector in elki.math.spacefillingcurves
Methods in elki.math.spacefillingcurves with parameters of type NumberVector Modifier and Type Method Description byte[]ZCurveTransformer. asByteArray(NumberVector vector)Transform a single vector.Constructor parameters in elki.math.spacefillingcurves with type arguments of type NumberVector Constructor Description ZCurveTransformer(Relation<? extends NumberVector> relation, DBIDs ids)Constructor. -
Uses of NumberVector in elki.math.statistics.intrinsicdimensionality
Method parameters in elki.math.statistics.intrinsicdimensionality with type arguments of type NumberVector Modifier and Type Method Description protected doubleLPCAEstimator. estimate(DBIDs ids, Relation<? extends NumberVector> relation)Returns an ID estimate based on the specified filter for the given point DBID set and relation.doubleLPCAEstimator. estimate(KNNSearcher<DBIDRef> knnq, DistanceQuery<? extends NumberVector> distq, DBIDRef cur, int k)doubleLPCAEstimator. estimate(RangeSearcher<DBIDRef> rnq, DistanceQuery<? extends NumberVector> distq, DBIDRef cur, double range) -
Uses of NumberVector in elki.outlier
Classes in elki.outlier with type parameters of type NumberVector Modifier and Type Class Description classCOP<V extends NumberVector>Correlation outlier probability: Outlier Detection in Arbitrarily Oriented Subspacesstatic classCOP.Par<V extends NumberVector>Parameterization class.classSimpleCOP<V extends NumberVector>Algorithm to compute local correlation outlier probability.static classSimpleCOP.Par<V extends NumberVector>Parameterization class.Method parameters in elki.outlier with type arguments of type NumberVector Modifier and Type Method Description private static voidCOP. computeCentroid(double[] centroid, Relation<? extends NumberVector> relation, DBIDs ids)Recompute the centroid of a set.private doubleGaussianUniformMixture. loglikelihoodNormal(DBIDs objids, SetDBIDs anomalous, CovarianceMatrix builder, Relation<? extends NumberVector> relation)Computes the loglikelihood of all normal objects.OutlierResultGaussianModel. run(Relation<? extends NumberVector> relation)Run the algorithmOutlierResultGaussianUniformMixture. run(Relation<? extends NumberVector> relation)Run the algorithm -
Uses of NumberVector in elki.outlier.anglebased
Classes in elki.outlier.anglebased with type parameters of type NumberVector Modifier and Type Class Description classABOD<V extends NumberVector>Angle-Based Outlier Detection / Angle-Based Outlier Factor.static classABOD.Par<V extends NumberVector>Parameterization class.classFastABOD<V extends NumberVector>Fast-ABOD (approximateABOF) version of Angle-Based Outlier Detection / Angle-Based Outlier Factor.static classFastABOD.Par<V extends NumberVector>Parameterization class.classLBABOD<V extends NumberVector>LB-ABOD (lower-bound) version of Angle-Based Outlier Detection / Angle-Based Outlier Factor.static classLBABOD.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.outlier.clustering
Classes in elki.outlier.clustering with type parameters of type NumberVector Modifier and Type Class Description classCBLOF<O extends NumberVector>Cluster-based local outlier factor (CBLOF).static classCBLOF.Par<O extends NumberVector>Parameterization class.classEMOutlier<V extends NumberVector>Outlier detection algorithm using EM Clustering.static classEMOutlier.Par<V extends NumberVector>Parameterization class.classKMeansOutlierDetection<O extends NumberVector>Outlier detection by using k-means clustering.static classKMeansOutlierDetection.Par<O extends NumberVector>Parameterizer.Methods in elki.outlier.clustering with parameters of type NumberVector Modifier and Type Method Description private doubleCBLOF. computeLargeClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, NumberVector clusterMean, Cluster<MeanModel> cluster)Method parameters in elki.outlier.clustering with type arguments of type NumberVector Modifier and Type Method Description private doubleCBLOF. computeSmallClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, java.util.List<NumberVector> largeClusterMeans, Cluster<MeanModel> cluster)OutlierResultDBSCANOutlierDetection. run(Database db, Relation<? extends NumberVector> relation)Runs the algorithm in the timed evaluation part.OutlierResultGLOSH. run(Database db, Relation<? extends NumberVector> relation) -
Uses of NumberVector in elki.outlier.density
Fields in elki.outlier.density with type parameters of type NumberVector Modifier and Type Field Description (package private) Relation<? extends NumberVector>IsolationForest.ForestBuilder. relationData relation to useMethods in elki.outlier.density with parameters of type NumberVector Modifier and Type Method Description protected doubleIsolationForest. isolationScore(IsolationForest.Node n, NumberVector v)Search a vector in the tree, return depth (path length)Method parameters in elki.outlier.density with type arguments of type NumberVector Modifier and Type Method Description private java.util.List<HySortOD.Hypercube>HySortOD. getSortedHypercubes(Relation<? extends NumberVector> relation)Create and sort hypercubes considering their coordinates.OutlierResultHySortOD. run(Database db, Relation<? extends NumberVector> relation)OutlierResultIsolationForest. run(Relation<? extends NumberVector> relation)Run the isolation forest algorithm.Constructors in elki.outlier.density with parameters of type NumberVector Constructor Description Hypercube(NumberVector values, double length)Hypercube constructor.Constructor parameters in elki.outlier.density with type arguments of type NumberVector Constructor Description ForestBuilder(Relation<? extends NumberVector> relation, int subsampleSize, java.util.Random random)Constructor for the tree builder. -
Uses of NumberVector in elki.outlier.distance
Classes in elki.outlier.distance with type parameters of type NumberVector Modifier and Type Class Description classHilOut<O extends NumberVector>Fast Outlier Detection in High Dimensional Spacesstatic classHilOut.Par<O extends NumberVector>Parameterization classFields in elki.outlier.distance with type parameters of type NumberVector Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>ReferenceBasedOutlierDetection. distanceDistance function used.protected NumberVectorDistance<? super NumberVector>ReferenceBasedOutlierDetection.Par. distanceThe distance function to use.Methods in elki.outlier.distance with parameters of type NumberVector Modifier and Type Method Description protected DoubleDBIDListReferenceBasedOutlierDetection. computeDistanceVector(NumberVector refPoint, Relation<? extends NumberVector> database, PrimitiveDistanceQuery<? super NumberVector> distFunc)Computes for each object the distance to one reference point.private doubleHilOut.HilbertFeatures. getDimForObject(NumberVector obj, int dim)Get the (projected) position of the object in dimension dim.Method parameters in elki.outlier.distance with type arguments of type NumberVector Modifier and Type Method Description protected DoubleDBIDListReferenceBasedOutlierDetection. computeDistanceVector(NumberVector refPoint, Relation<? extends NumberVector> database, PrimitiveDistanceQuery<? super NumberVector> distFunc)Computes for each object the distance to one reference point.protected DoubleDBIDListReferenceBasedOutlierDetection. computeDistanceVector(NumberVector refPoint, Relation<? extends NumberVector> database, PrimitiveDistanceQuery<? super NumberVector> distFunc)Computes for each object the distance to one reference point.OutlierResultReferenceBasedOutlierDetection. run(Relation<? extends NumberVector> relation)Run the algorithm on the given relation.Constructor parameters in elki.outlier.distance with type arguments of type NumberVector Constructor Description ReferenceBasedOutlierDetection(int k, NumberVectorDistance<? super NumberVector> distance, ReferencePointsHeuristic refp)Constructor with parameters. -
Uses of NumberVector in elki.outlier.lof
Classes in elki.outlier.lof with type parameters of type NumberVector Modifier and Type Class Description classALOCI<V extends NumberVector>Fast Outlier Detection Using the "approximate Local Correlation Integral".static classALOCI.Par<O extends NumberVector>Parameterization class.classLDF<O extends NumberVector>Outlier Detection with Kernel Density Functions.static classLDF.Par<O extends NumberVector>Parameterization class.classSimpleKernelDensityLOF<O extends NumberVector>A simple variant of the LOF algorithm, which uses a simple kernel density estimation instead of the local reachability density.static classSimpleKernelDensityLOF.Par<O extends NumberVector>Parameterization class.Classes in elki.outlier.lof that implement NumberVector Modifier and Type Class Description (package private) static classALOCI.NodeNode of the ALOCI QuadtreeFields in elki.outlier.lof with type parameters of type NumberVector Modifier and Type Field Description private Relation<? extends NumberVector>ALOCI.ALOCIQuadTree. relationRelation indexed.Methods in elki.outlier.lof with parameters of type NumberVector Modifier and Type Method Description ALOCI.NodeALOCI.ALOCIQuadTree. findClosestNode(NumberVector vec, int tlevel)Find the closest node (of depthtlevelor above, if there is no node at this depth) for the given vector.private doubleALOCI.ALOCIQuadTree. getShiftedDim(NumberVector obj, int dim, int level)Shift and wrap a single dimension.Constructor parameters in elki.outlier.lof with type arguments of type NumberVector Constructor Description ALOCIQuadTree(double[] min, double[] max, double[] shift, int nmin, Relation<? extends NumberVector> relation)Constructor. -
Uses of NumberVector in elki.outlier.meta
Method parameters in elki.outlier.meta with type arguments of type NumberVector Modifier and Type Method Description private java.util.ArrayList<ArrayDBIDs>HiCS. buildOneDimIndexes(Relation<? extends NumberVector> relation)Calculates "index structures" for every attribute, i.e. sorts a ModifiableArray of every DBID in the database for every dimension and stores them in a listprivate voidHiCS. calculateContrast(Relation<? extends NumberVector> relation, HiCS.HiCSSubspace subspace, java.util.ArrayList<ArrayDBIDs> subspaceIndex, java.util.Random random)Calculates the actual contrast of a given subspace.private java.util.Set<HiCS.HiCSSubspace>HiCS. calculateSubspaces(Relation<? extends NumberVector> relation, java.util.ArrayList<ArrayDBIDs> subspaceIndex, java.util.Random random)Identifies high contrast subspaces in a given full-dimensional database.OutlierResultFeatureBagging. run(Relation<NumberVector> relation)Run the algorithm on a data set.OutlierResultHiCS. run(Relation<? extends NumberVector> relation)Perform HiCS on a given database. -
Uses of NumberVector in elki.outlier.spatial
Classes in elki.outlier.spatial with type parameters of type NumberVector Modifier and Type Class Description classCTLuGLSBackwardSearchAlgorithm<V extends NumberVector>GLS-Backward Search is a statistical approach to detecting spatial outliers.static classCTLuGLSBackwardSearchAlgorithm.Par<V extends NumberVector>Parameterization classclassCTLuMeanMultipleAttributes<N,O extends NumberVector>Mean Approach is used to discover spatial outliers with multiple attributes.static classCTLuMeanMultipleAttributes.Par<N,O extends NumberVector>Parameterization class.classCTLuMedianMultipleAttributes<N,O extends NumberVector>Median Approach is used to discover spatial outliers with multiple attributes.static classCTLuMedianMultipleAttributes.Par<N,O extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.outlier.subspace
Classes in elki.outlier.subspace with type parameters of type NumberVector Modifier and Type Class Description classSOD<V extends NumberVector>Subspace Outlier Degree: Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data.static classSOD.Par<V extends NumberVector>Parameterization class.Fields in elki.outlier.subspace with type parameters of type NumberVector Modifier and Type Field Description (package private) Relation<? extends NumberVector>OUTRES.KernelDensityEstimator. relationRelation to retrieve data fromMethod parameters in elki.outlier.subspace with type arguments of type NumberVector Modifier and Type Method Description protected java.util.ArrayList<java.util.ArrayList<DBIDs>>AbstractAggarwalYuOutlier. buildRanges(Relation<? extends NumberVector> relation)Grid discretization of the data:
Each attribute of data is divided into phi equi-depth ranges.
Each range contains a fraction f=1/phi of the records.private static double[]SOD. computePerDimensionVariances(Relation<? extends NumberVector> relation, double[] center, DBIDs neighborhood)Compute the per-dimension variances for the given neighborhood and center.private DoubleDBIDListOUTRES. initialRange(DBIDRef obj, DBIDs cands, PrimitiveDistance<? super NumberVector> df, double eps, OUTRES.KernelDensityEstimator kernel, ModifiableDoubleDBIDList n)Initial range query.OutlierResultAggarwalYuEvolutionary. run(Relation<? extends NumberVector> relation)Performs the evolutionary algorithm on the given database.OutlierResultAggarwalYuNaive. run(Relation<? extends NumberVector> relation)Run the algorithm on the given relation.OutlierResultOUTRES. run(Relation<? extends NumberVector> relation)Main loop for OUTRESprivate DoubleDBIDListOUTRES. subsetNeighborhoodQuery(DoubleDBIDList neighc, DBIDRef dbid, PrimitiveDistance<? super NumberVector> df, double adjustedEps, OUTRES.KernelDensityEstimator kernel, ModifiableDoubleDBIDList n)Refine neighbors within a subset.Constructor parameters in elki.outlier.subspace with type arguments of type NumberVector Constructor Description EvolutionarySearch(Relation<? extends NumberVector> relation, java.util.ArrayList<java.util.ArrayList<DBIDs>> ranges, java.util.Random random)Constructor.KernelDensityEstimator(Relation<? extends NumberVector> relation, double eps)Constructor. -
Uses of NumberVector in elki.outlier.svm
Classes in elki.outlier.svm with type parameters of type NumberVector Modifier and Type Class Description classLibSVMOneClassOutlierDetection<V extends NumberVector>Outlier-detection using one-class support vector machines.static classLibSVMOneClassOutlierDetection.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in elki.outlier.trivial
Method parameters in elki.outlier.trivial with type arguments of type NumberVector Modifier and Type Method Description OutlierResultTrivialAverageCoordinateOutlier. run(Relation<? extends NumberVector> relation)Run the actual algorithm. -
Uses of NumberVector in elki.result
Method parameters in elki.result with type arguments of type NumberVector Modifier and Type Method Description private DoubleObjPair<Polygon>KMLOutputHandler. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords)Recursively step through the clusters to build the hulls. -
Uses of NumberVector in elki.similarity
Methods in elki.similarity with type parameters of type NumberVector Modifier and Type Method Description <T extends NumberVector>
SpatialPrimitiveDistanceSimilarityQuery<T>Kulczynski1Similarity. instantiate(Relation<T> database)Methods in elki.similarity that return types with arguments of type NumberVector Modifier and Type Method Description SimpleTypeInformation<? super NumberVector>AbstractVectorSimilarity. getInputTypeRestriction()Methods in elki.similarity with parameters of type NumberVector Modifier and Type Method Description doubleKulczynski1Similarity. distance(NumberVector v1, NumberVector v2)doubleKulczynski1Similarity. similarity(NumberVector v1, NumberVector v2)doubleKulczynski2Similarity. similarity(NumberVector v1, NumberVector v2) -
Uses of NumberVector in elki.similarity.kernel
Methods in elki.similarity.kernel with type parameters of type NumberVector Modifier and Type Method Description <T extends NumberVector>
DistanceSimilarityQuery<T>PolynomialKernel. instantiate(Relation<T> database)Methods in elki.similarity.kernel with parameters of type NumberVector Modifier and Type Method Description doubleLinearKernel. distance(NumberVector fv1, NumberVector fv2)doublePolynomialKernel. distance(NumberVector fv1, NumberVector fv2)doubleLaplaceKernel. similarity(NumberVector o1, NumberVector o2)doubleLinearKernel. similarity(NumberVector o1, NumberVector o2)doublePolynomialKernel. similarity(NumberVector o1, NumberVector o2)doubleRadialBasisFunctionKernel. similarity(NumberVector o1, NumberVector o2)doubleRationalQuadraticKernel. similarity(NumberVector o1, NumberVector o2)doubleSigmoidKernel. similarity(NumberVector o1, NumberVector o2) -
Uses of NumberVector in elki.timeseries
Methods in elki.timeseries with parameters of type NumberVector Modifier and Type Method Description private doubleSigniTrendChangeDetection.Instance. processRow(DBIDRef iter, NumberVector row, ChangePoints changepoints)Process one row, assuming a constant time interval.Method parameters in elki.timeseries with type arguments of type NumberVector Modifier and Type Method Description ChangePointsSigniTrendChangeDetection.Instance. run(Relation<NumberVector> relation)Process a relation.ChangePointsSigniTrendChangeDetection. run(Relation<NumberVector> relation)Executes Signi-Trend for given relation -
Uses of NumberVector in elki.utilities.datastructures.arraylike
Methods in elki.utilities.datastructures.arraylike with parameters of type NumberVector Modifier and Type Method Description java.lang.NumberNumberVectorAdapter. get(NumberVector array, int off)Deprecated.byteNumberVectorAdapter. getByte(NumberVector array, int off)doubleNumberVectorAdapter. getDouble(NumberVector array, int off)floatNumberVectorAdapter. getFloat(NumberVector array, int off)intNumberVectorAdapter. getInteger(NumberVector array, int off)longNumberVectorAdapter. getLong(NumberVector array, int off)shortNumberVectorAdapter. getShort(NumberVector array, int off)intNumberVectorAdapter. size(NumberVector array)static double[]ArrayLikeUtil. toPrimitiveDoubleArray(NumberVector obj)Convert a number vector todouble[].static float[]ArrayLikeUtil. toPrimitiveFloatArray(NumberVector obj)Convert a number vector tofloat[].static int[]ArrayLikeUtil. toPrimitiveIntegerArray(NumberVector obj)Convert a number vector toint[]. -
Uses of NumberVector in elki.utilities.referencepoints
Methods in elki.utilities.referencepoints that return types with arguments of type NumberVector Modifier and Type Method Description java.util.Collection<? extends NumberVector>AxisBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>FullDatabaseReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>GridBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>RandomGeneratedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>RandomSampleReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>ReferencePointsHeuristic. getReferencePoints(Relation<? extends NumberVector> db)Get the reference points for the given database.java.util.Collection<? extends NumberVector>StarBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)Method parameters in elki.utilities.referencepoints with type arguments of type NumberVector Modifier and Type Method Description java.util.Collection<? extends NumberVector>AxisBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>FullDatabaseReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>GridBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>RandomGeneratedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>RandomSampleReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>ReferencePointsHeuristic. getReferencePoints(Relation<? extends NumberVector> db)Get the reference points for the given database.java.util.Collection<? extends NumberVector>StarBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db) -
Uses of NumberVector in elki.visualization.parallel3d
Classes in elki.visualization.parallel3d with type parameters of type NumberVector Modifier and Type Class Description classOpenGL3DParallelCoordinates<O extends NumberVector>Simple JOGL2 based parallel coordinates visualization.static classOpenGL3DParallelCoordinates.Instance<O extends NumberVector>Visualizer instance.static classOpenGL3DParallelCoordinates.Par<O extends NumberVector>Parameterization class.classParallel3DRenderer<O extends NumberVector>Renderer for 3D parallel plots. -
Uses of NumberVector in elki.visualization.parallel3d.layout
Method parameters in elki.visualization.parallel3d.layout with type arguments of type NumberVector Modifier and Type Method Description static double[]AbstractLayout3DPC. computeSimilarityMatrix(Dependence sim, Relation<? extends NumberVector> rel)Compute a column-wise dependency matrix for the given relation.LayoutAbstractLayout3DPC. layout(Relation<? extends NumberVector> rel) -
Uses of NumberVector in elki.visualization.projections
Methods in elki.visualization.projections with type parameters of type NumberVector Modifier and Type Method Description <NV extends NumberVector>
NVAbstractFullProjection. projectRelativeRenderToDataSpace(double[] v, NumberVector.Factory<NV> prototype)Project a relative vector from rendering space to data space.<NV extends NumberVector>
NVFullProjection. projectRelativeRenderToDataSpace(double[] v, NumberVector.Factory<NV> prototype)Project a relative vector from rendering space to data space.<NV extends NumberVector>
NVAbstractFullProjection. projectRelativeScaledToDataSpace(double[] v, NumberVector.Factory<NV> prototype)Project a relative vector from scaled space to data space.<NV extends NumberVector>
NVFullProjection. projectRelativeScaledToDataSpace(double[] v, NumberVector.Factory<NV> prototype)Project a relative vector from scaled space to data space.<NV extends NumberVector>
NVAbstractFullProjection. projectRenderToDataSpace(double[] v, NumberVector.Factory<NV> prototype)Project a vector from rendering space to data space.<NV extends NumberVector>
NVFullProjection. projectRenderToDataSpace(double[] v, NumberVector.Factory<NV> prototype)Project a vector from rendering space to data space.<NV extends NumberVector>
NVAbstractFullProjection. projectScaledToDataSpace(double[] v, NumberVector.Factory<NV> factory)Project a vector from scaled space to data space.<NV extends NumberVector>
NVFullProjection. projectScaledToDataSpace(double[] v, NumberVector.Factory<NV> factory)Project a vector from scaled space to data space.Methods in elki.visualization.projections with parameters of type NumberVector Modifier and Type Method Description double[]AffineProjection. fastProjectDataToRenderSpace(NumberVector data)doubleProjection1D. fastProjectDataToRenderSpace(NumberVector data)Project a data vector from data space to rendering space.double[]Projection2D. fastProjectDataToRenderSpace(NumberVector data)Project a data vector from data space to rendering space.double[]ProjectionParallel. fastProjectDataToRenderSpace(NumberVector v)Fast project a vector from data to render spacedoubleSimple1D. fastProjectDataToRenderSpace(NumberVector data)double[]Simple2D. fastProjectDataToRenderSpace(NumberVector data)double[]SimpleParallel. fastProjectDataToRenderSpace(NumberVector data)double[]AffineProjection. fastProjectDataToScaledSpace(NumberVector data)double[]Projection2D. fastProjectDataToScaledSpace(NumberVector data)Project a data vector from data space to scaled space.double[]Simple2D. fastProjectDataToScaledSpace(NumberVector data)double[]AffineProjection. fastProjectRelativeDataToRenderSpace(NumberVector data)doubleProjection1D. fastProjectRelativeDataToRenderSpace(NumberVector data)Project a data vector from data space to rendering space.double[]Projection2D. fastProjectRelativeDataToRenderSpace(NumberVector data)Project a data vector from data space to rendering space.doubleSimple1D. fastProjectRelativeDataToRenderSpace(NumberVector data)double[]Simple2D. fastProjectRelativeDataToRenderSpace(NumberVector data)double[]AbstractFullProjection. projectDataToRenderSpace(NumberVector data)Project a data vector from data space to rendering space.double[]FullProjection. projectDataToRenderSpace(NumberVector data)Project a data vector from data space to rendering space.double[]AbstractFullProjection. projectDataToScaledSpace(NumberVector data)Project a data vector from data space to scaled space.double[]FullProjection. projectDataToScaledSpace(NumberVector data)Project a data vector from data space to scaled space.double[]AbstractFullProjection. projectRelativeDataToRenderSpace(NumberVector data)Project a relative data vector from data space to rendering space.double[]FullProjection. projectRelativeDataToRenderSpace(NumberVector data)Project a relative data vector from data space to rendering space.double[]AbstractFullProjection. projectRelativeDataToScaledSpace(NumberVector data)Project a relative data vector from data space to scaled space.double[]FullProjection. projectRelativeDataToScaledSpace(NumberVector data)Project a relative data vector from data space to scaled space. -
Uses of NumberVector in elki.visualization.projector
Classes in elki.visualization.projector with type parameters of type NumberVector Modifier and Type Class Description classHistogramProjector<V extends NumberVector>ScatterPlotProjector is responsible for producing a set of scatterplot visualizations. -
Uses of NumberVector in elki.visualization.svg
Methods in elki.visualization.svg with parameters of type NumberVector Modifier and Type Method Description static org.w3c.dom.ElementSVGHyperSphere. drawCross(SVGPlot svgp, Projection2D proj, NumberVector mid, double radius)Wireframe "cross" hyperspherestatic org.w3c.dom.ElementSVGHyperSphere. drawEuclidean(SVGPlot svgp, Projection2D proj, NumberVector mid, double radius)Wireframe "euclidean" hyperspherestatic org.w3c.dom.ElementSVGHyperCube. drawFilled(SVGPlot svgp, java.lang.String cls, Projection2D proj, NumberVector min, NumberVector max)Filled hypercube.static org.w3c.dom.ElementSVGHyperCube. drawFrame(SVGPlot svgp, Projection2D proj, NumberVector min, NumberVector max)Wireframe hypercube.static org.w3c.dom.ElementSVGHyperSphere. drawLp(SVGPlot svgp, Projection2D proj, NumberVector mid, double radius, double p)Wireframe "Lp" hyperspherestatic org.w3c.dom.ElementSVGHyperSphere. drawManhattan(SVGPlot svgp, Projection2D proj, NumberVector mid, double radius)Wireframe "manhattan" hypersphereprivate static java.util.ArrayList<double[]>SVGHyperCube. getVisibleEdges(Projection2D proj, NumberVector s_min, NumberVector s_max)Get the visible (non-0) edges of a hypercube -
Uses of NumberVector in elki.visualization.visualizers.histogram
Classes in elki.visualization.visualizers.histogram with type parameters of type NumberVector Modifier and Type Class Description classColoredHistogramVisualizer.Instance<NV extends NumberVector>Instance -
Uses of NumberVector in elki.visualization.visualizers.scatterplot
Fields in elki.visualization.visualizers.scatterplot with type parameters of type NumberVector Modifier and Type Field Description protected Relation<? extends NumberVector>AbstractScatterplotVisualization. relThe representation we visualizeprotected ReferencePointsResult<? extends NumberVector>ReferencePointsVisualization.Instance. resultServes reference points. -
Uses of NumberVector in elki.visualization.visualizers.scatterplot.selection
Fields in elki.visualization.visualizers.scatterplot.selection with type parameters of type NumberVector Modifier and Type Field Description private AbstractMaterializeKNNPreprocessor<? extends NumberVector>DistanceFunctionVisualization.Instance. resultThe selection result we work onMethods in elki.visualization.visualizers.scatterplot.selection with parameters of type NumberVector Modifier and Type Method Description static org.w3c.dom.ElementDistanceFunctionVisualization. drawCosine(SVGPlot svgp, Projection2D proj, NumberVector mid, double angle)Visualizes Cosine and ArcCosine distance functions -
Uses of NumberVector in tutorial.clustering
Classes in tutorial.clustering with type parameters of type NumberVector Modifier and Type Class Description classSameSizeKMeans<V extends NumberVector>K-means variation that produces equally sized clusters.static classSameSizeKMeans.Par<V extends NumberVector>Parameterization class. -
Uses of NumberVector in tutorial.distancefunction
Methods in tutorial.distancefunction that return types with arguments of type NumberVector Modifier and Type Method Description SimpleTypeInformation<? super NumberVector>MultiLPNorm. getInputTypeRestriction()SimpleTypeInformation<? super NumberVector>TutorialDistance. getInputTypeRestriction()Methods in tutorial.distancefunction with parameters of type NumberVector Modifier and Type Method Description doubleMultiLPNorm. distance(NumberVector o1, NumberVector o2)doubleTutorialDistance. distance(NumberVector o1, NumberVector o2)
-