Uses of Interface
elki.distance.NumberVectorDistance
-
Packages that use NumberVectorDistance Package Description elki.algorithm Miscellaneous algorithms.elki.algorithm.statistics Statistical analysis algorithms.elki.clustering Clustering algorithms.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.clustering.kmedoids.initialization elki.clustering.uncertain Clustering algorithms for uncertain data.elki.distance Distance functions for use within ELKI.elki.distance.colorhistogram Distance functions for color histograms.elki.distance.correlation Distance functions using correlations.elki.distance.geo Geographic (earth) distance functions.elki.distance.histogram Distance functions for one-dimensional histograms.elki.distance.minkowski Minkowski space Lp norms such as the popular Euclidean and Manhattan distances.elki.distance.probabilistic Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence, F-divergence, χ²-divergence, etc.elki.distance.set Distance functions for binary and set type data.elki.distance.subspace Distance functions based on subspaces.elki.distance.timeseries Distance functions designed for time series.elki.evaluation.clustering.internal Internal evaluation measures for clusterings.elki.outlier.clustering Clustering based outlier detection.elki.outlier.distance Distance-based outlier detection algorithms, such as DBOutlier and kNN.elki.outlier.lof LOF family of outlier detection algorithms.elki.similarity Similarity functions.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation.tutorial.distancefunction Classes from the tutorial on implementing distance functions. -
-
Uses of NumberVectorDistance in elki.algorithm
Fields in elki.algorithm declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<? super V>
DependencyDerivator. distance
Distance function used.protected NumberVectorDistance<? super V>
DependencyDerivator.Par. distance
The distance function to use.Constructors in elki.algorithm with parameters of type NumberVectorDistance Constructor Description DependencyDerivator(NumberVectorDistance<? super V> distance, java.text.NumberFormat nf, PCARunner pca, EigenPairFilter filter, int sampleSize, boolean randomsample)
Constructor. -
Uses of NumberVectorDistance in elki.algorithm.statistics
Fields in elki.algorithm.statistics declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>
HopkinsStatisticClusteringTendency. distance
Distance function used.protected NumberVectorDistance<? super NumberVector>
HopkinsStatisticClusteringTendency.Par. distance
The distance function to use.Constructors in elki.algorithm.statistics with parameters of type NumberVectorDistance Constructor Description HopkinsStatisticClusteringTendency(NumberVectorDistance<? super NumberVector> distance, int samplesize, RandomFactory random, int rep, int k, double[] minima, double[] maxima)
Constructor. -
Uses of NumberVectorDistance in elki.clustering
Fields in elki.clustering declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super V>
NaiveMeanShiftClustering. distance
Distance function used.protected NumberVectorDistance<? super V>
NaiveMeanShiftClustering.Par. distance
The distance function to use.Constructors in elki.clustering with parameters of type NumberVectorDistance Constructor Description NaiveMeanShiftClustering(NumberVectorDistance<? super V> distance, KernelDensityFunction kernel, double range)
Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<?>
AbstractKMeans.Instance. df
Distance function.protected NumberVectorDistance<? super V>
AbstractKMeans. distance
Distance function used.protected NumberVectorDistance<? super V>
AbstractKMeans.Par. distance
The distance function to use.Methods in elki.clustering.kmeans that return NumberVectorDistance Modifier and Type Method Description NumberVectorDistance<? super V>
AbstractKMeans. getDistance()
NumberVectorDistance<? super V>
BestOfMultipleKMeans. getDistance()
NumberVectorDistance<? super V>
BisectingKMeans. getDistance()
NumberVectorDistance<? super V>
KMeans. getDistance()
Returns the distance.Methods in elki.clustering.kmeans with parameters of type NumberVectorDistance Modifier and Type Method Description void
AbstractKMeans. setDistance(NumberVectorDistance<? super V> distance)
void
BestOfMultipleKMeans. setDistance(NumberVectorDistance<? super V> distance)
void
BisectingKMeans. setDistance(NumberVectorDistance<? super V> distance)
void
KMeans. setDistance(NumberVectorDistance<? super V> distance)
Set the distance function to use.Constructors in elki.clustering.kmeans with parameters of type NumberVectorDistance Constructor Description AbstractKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.AnnulusKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)
Constructor.CompareMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.ElkanKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)
Constructor.ExponionKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)
Constructor.GMeans(NumberVectorDistance<? super V> distance, double critical, int k_min, int k_max, int maxiter, KMeans<V,M> innerKMeans, KMeansInitialization initializer, RandomFactory random)
Constructor.HamerlyKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means, int t)
Constructor.KDTreeFilteringKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, KDTreePruningKMeans.Split split, int leafsize)
Constructor.KDTreePruningKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, KDTreePruningKMeans.Split split, int leafsize)
Constructor.KMeansMinusMinus(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, double rate, boolean noiseFlag)
Constructor.KMediansLloyd(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.LloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.MacQueenKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.ShallotKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)
Constructor.SimplifiedElkanKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)
Constructor.SingleAssignmentKMeans(NumberVectorDistance<? super V> distance, int k, KMeansInitialization initializer)
Constructor.SortMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor.XMeans(NumberVectorDistance<? super V> distance, int k_min, int k_max, int maxiter, KMeans<V,M> innerKMeans, KMeansInitialization initializer, KMeansQualityMeasure<V> informationCriterion, RandomFactory random)
Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans.initialization
Fields in elki.clustering.kmeans.initialization declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<?>
KMC2.Instance. distance
Distance functionprotected NumberVectorDistance<?>
KMeansPlusPlus.NumberVectorInstance. distance
Distance functionMethods in elki.clustering.kmeans.initialization with parameters of type NumberVectorDistance Modifier and Type Method Description double[][]
AFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
FarthestPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
FarthestSumPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
FirstK. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
KMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
KMeansInitialization. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
Choose initial meansdouble[][]
KMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
Ostrovsky. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
Predefined. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
RandomlyChosen. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
RandomNormalGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
RandomUniformGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
SampleKMeans. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
SphericalAFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
SphericalKMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
Constructors in elki.clustering.kmeans.initialization with parameters of type NumberVectorDistance Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)
Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)
Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)
Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans.parallel
Fields in elki.clustering.kmeans.parallel declared as NumberVectorDistance Modifier and Type Field Description (package private) NumberVectorDistance<? super V>
KMeansProcessor. distance
Distance function.private NumberVectorDistance<? super V>
KMeansProcessor.Instance. distance
Distance function.Constructors in elki.clustering.kmeans.parallel with parameters of type NumberVectorDistance Constructor Description Instance(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[][] means)
Constructor.KMeansProcessor(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[] varsum)
Constructor.ParallelLloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans.quality
Methods in elki.clustering.kmeans.quality with parameters of type NumberVectorDistance Modifier and Type Method Description static double
AbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionXMeans. logLikelihoodXMeans(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionZhao. logLikelihoodZhao(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.<V extends NumberVector>
doubleAkaikeInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleAkaikeInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionZhao. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends O>
doubleKMeansQualityMeasure. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
Calculates and returns the quality measure.<V extends NumberVector>
doubleWithinClusterMeanDistance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleWithinClusterVariance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
static double
AbstractKMeansQualityMeasure. varianceContributionOfCluster(Cluster<? extends MeanModel> cluster, NumberVectorDistance<?> distance, Relation<? extends NumberVector> relation)
Variance contribution of a single cluster. -
Uses of NumberVectorDistance in elki.clustering.kmedoids.initialization
Methods in elki.clustering.kmedoids.initialization with parameters of type NumberVectorDistance Modifier and Type Method Description double[][]
BUILD. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
LAB. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
ParkJun. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
-
Uses of NumberVectorDistance in elki.clustering.uncertain
Constructors in elki.clustering.uncertain with parameters of type NumberVectorDistance Constructor Description CKMeans(NumberVectorDistance<? super NumberVector> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor that uses Lloyd's k-means algorithm. -
Uses of NumberVectorDistance in elki.distance
Subinterfaces of NumberVectorDistance in elki.distance Modifier and Type Interface Description interface
WeightedNumberVectorDistance<V>
Distance functions where each dimension is assigned a weight.Classes in elki.distance that implement NumberVectorDistance Modifier and Type Class Description class
AbstractNumberVectorDistance
Abstract base class for the most common family of distance functions: defined on number vectors and returning double values.class
ArcCosineDistance
Arcus cosine distance function for feature vectors.class
ArcCosineUnitlengthDistance
Arcus cosine distance function for feature vectors.class
BrayCurtisDistance
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous vector spaces (not only binary data).class
CanberraDistance
Canberra distance function, a variation of Manhattan distance.class
ClarkDistance
Clark distance function for vector spaces.class
CosineDistance
Cosine distance function for feature vectors.class
CosineUnitlengthDistance
Cosine distance function for unit length feature vectors.class
MahalanobisDistance
Mahalanobis quadratic form distance for feature vectors.class
MatrixWeightedQuadraticDistance
Matrix weighted quadratic distance, the squared form ofMahalanobisDistance
.class
SqrtCosineDistance
Cosine distance function for feature vectors using the square root.class
SqrtCosineUnitlengthDistance
Cosine distance function for unit length feature vectors using the square root.class
WeightedCanberraDistance
Weighted Canberra distance function, a variation of Manhattan distance. -
Uses of NumberVectorDistance in elki.distance.colorhistogram
Classes in elki.distance.colorhistogram that implement NumberVectorDistance Modifier and Type Class Description class
HistogramIntersectionDistance
Intersection distance for color histograms.class
HSBHistogramQuadraticDistance
Distance function for HSB color histograms based on a quadratic form and color similarity.class
RGBHistogramQuadraticDistance
Distance function for RGB color histograms based on a quadratic form and color similarity. -
Uses of NumberVectorDistance in elki.distance.correlation
Classes in elki.distance.correlation that implement NumberVectorDistance Modifier and Type Class Description class
AbsolutePearsonCorrelationDistance
Absolute Pearson correlation distance function for feature vectors.class
AbsoluteUncenteredCorrelationDistance
Absolute uncentered correlation distance function for feature vectors.class
PearsonCorrelationDistance
Pearson correlation distance function for feature vectors.class
SquaredPearsonCorrelationDistance
Squared Pearson correlation distance function for feature vectors.class
SquaredUncenteredCorrelationDistance
Squared uncentered correlation distance function for feature vectors.class
UncenteredCorrelationDistance
Uncentered correlation distance.class
WeightedPearsonCorrelationDistance
Pearson correlation distance function for feature vectors.class
WeightedSquaredPearsonCorrelationDistance
Weighted squared Pearson correlation distance function for feature vectors. -
Uses of NumberVectorDistance in elki.distance.geo
Classes in elki.distance.geo that implement NumberVectorDistance Modifier and Type Class Description class
DimensionSelectingLatLngDistance
Distance function for 2D vectors in Latitude, Longitude form.class
LatLngDistance
Distance function for 2D vectors in Latitude, Longitude form.class
LngLatDistance
Distance function for 2D vectors in Longitude, Latitude form. -
Uses of NumberVectorDistance in elki.distance.histogram
Classes in elki.distance.histogram that implement NumberVectorDistance Modifier and Type Class Description class
HistogramMatchDistance
Distance function based on histogram matching, i.e., Manhattan distance on the cumulative density function.class
KolmogorovSmirnovDistance
Distance function based on the Kolmogorov-Smirnov goodness of fit test. -
Uses of NumberVectorDistance in elki.distance.minkowski
Classes in elki.distance.minkowski that implement NumberVectorDistance Modifier and Type Class Description class
EuclideanDistance
Euclidean distance forNumberVector
s.class
LPIntegerNormDistance
Lp-Norm forNumberVector
s, optimized version for integer values of p.class
LPNormDistance
Lp-Norm (Minkowski norms) are a family of distances forNumberVector
s.class
ManhattanDistance
Manhattan distance forNumberVector
s.class
MaximumDistance
Maximum distance forNumberVector
s.class
MinimumDistance
Minimum distance forNumberVector
s.class
SquaredEuclideanDistance
Squared Euclidean distance, optimized forSparseNumberVector
s.class
WeightedEuclideanDistance
Weighted Euclidean distance forNumberVector
s.class
WeightedLPNormDistance
Weighted version of the Minkowski Lp norm distance forNumberVector
.class
WeightedManhattanDistance
Weighted version of the Manhattan (L1) metric.class
WeightedMaximumDistance
Weighted version of the maximum distance function forNumberVector
s.class
WeightedSquaredEuclideanDistance
Weighted squared Euclidean distance forNumberVector
s. -
Uses of NumberVectorDistance in elki.distance.probabilistic
Classes in elki.distance.probabilistic that implement NumberVectorDistance Modifier and Type Class Description class
ChiDistance
χ distance function, symmetric version.class
ChiSquaredDistance
χ² distance function, symmetric version.class
FisherRaoDistance
Fisher-Rao riemannian metric for (discrete) probability distributions.class
HellingerDistance
Hellinger metric / affinity / kernel, Bhattacharyya coefficient, fidelity similarity, Matusita distance, Hellinger-Kakutani metric on a probability distribution.class
JeffreyDivergenceDistance
Jeffrey Divergence forNumberVector
s is a symmetric, smoothened version of theKullbackLeiblerDivergenceAsymmetricDistance
.class
JensenShannonDivergenceDistance
Jensen-Shannon Divergence forNumberVector
s is a symmetric, smoothened version of theKullbackLeiblerDivergenceAsymmetricDistance
.class
KullbackLeiblerDivergenceAsymmetricDistance
Kullback-Leibler divergence, also known as relative entropy, information deviation, or just KL-distance (albeit asymmetric).class
KullbackLeiblerDivergenceReverseAsymmetricDistance
Kullback-Leibler divergence, also known as relative entropy, information deviation or just KL-distance (albeit asymmetric).class
SqrtJensenShannonDivergenceDistance
The square root of Jensen-Shannon divergence is a metric.class
TriangularDiscriminationDistance
Triangular Discrimination has relatively tight upper and lower bounds to the Jensen-Shannon divergence, but is much less expensive.class
TriangularDistance
Triangular Distance has relatively tight upper and lower bounds to the (square root of the) Jensen-Shannon divergence, but is much less expensive. -
Uses of NumberVectorDistance in elki.distance.set
Classes in elki.distance.set that implement NumberVectorDistance Modifier and Type Class Description class
HammingDistance
Computes the Hamming distance of arbitrary vectors - i.e. counting, on how many places they differ.class
JaccardSimilarityDistance
A flexible extension of Jaccard similarity to non-binary vectors. -
Uses of NumberVectorDistance in elki.distance.subspace
Classes in elki.distance.subspace that implement NumberVectorDistance Modifier and Type Class Description class
OnedimensionalDistance
Distance function that computes the distance between feature vectors as the absolute difference of their values in a specified dimension only.class
SubspaceEuclideanDistance
Euclidean distance function betweenNumberVector
s only in specified dimensions.class
SubspaceLPNormDistance
Lp-Norm distance function betweenNumberVector
s only in specified dimensions.class
SubspaceManhattanDistance
Manhattan distance function betweenNumberVector
s only in specified dimensions.class
SubspaceMaximumDistance
Maximum distance function betweenNumberVector
s only in specified dimensions. -
Uses of NumberVectorDistance in elki.distance.timeseries
Classes in elki.distance.timeseries that implement NumberVectorDistance Modifier and Type Class Description class
AbstractEditDistance
Edit Distance for FeatureVectors.class
DerivativeDTWDistance
Derivative Dynamic Time Warping distance for numerical vectors.class
DTWDistance
Dynamic Time Warping distance (DTW) for numerical vectors.class
EDRDistance
Edit Distance on Real Sequence distance for numerical vectors.class
ERPDistance
Edit Distance With Real Penalty distance for numerical vectors.class
LCSSDistance
Longest Common Subsequence distance for numerical vectors. -
Uses of NumberVectorDistance in elki.evaluation.clustering.internal
Fields in elki.evaluation.clustering.internal declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<?>
ClusterRadius. distance
Distance function to use.private NumberVectorDistance<?>
ClusterRadius.Par. distance
Distance function to use.private NumberVectorDistance<?>
DaviesBouldinIndex. distance
Distance function to use.private NumberVectorDistance<?>
DaviesBouldinIndex.Par. distance
Distance function to use.private NumberVectorDistance<?>
PBMIndex. distance
Distance function to use.private NumberVectorDistance<?>
PBMIndex.Par. distance
Distance function to use.private NumberVectorDistance<?>
SimplifiedSilhouette. distance
Distance function to use.private NumberVectorDistance<?>
SimplifiedSilhouette.Par. distance
Distance function to use.private NumberVectorDistance<?>
SquaredErrors. distance
Distance function to use.private NumberVectorDistance<?>
SquaredErrors.Par. distance
Distance function to use.Constructors in elki.evaluation.clustering.internal with parameters of type NumberVectorDistance Constructor Description ClusterRadius(NumberVectorDistance<?> distance, NoiseHandling noiseOption)
Constructor.DaviesBouldinIndex(NumberVectorDistance<?> distance, NoiseHandling noiseOpt, double p)
Constructor.PBMIndex(NumberVectorDistance<?> distance, NoiseHandling noiseOpt)
Constructor.SimplifiedSilhouette(NumberVectorDistance<?> distance, NoiseHandling noiseOpt, boolean penalize)
Constructor.SquaredErrors(NumberVectorDistance<?> distance, NoiseHandling noiseOption)
Constructor. -
Uses of NumberVectorDistance in elki.outlier.clustering
Fields in elki.outlier.clustering declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super O>
CBLOF. distance
Distance function used.protected NumberVectorDistance<? super O>
CBLOF.Par. distance
Distance function to use.Methods in elki.outlier.clustering with parameters of type NumberVectorDistance Modifier and Type Method Description private double
CBLOF. computeLargeClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, NumberVector clusterMean, Cluster<MeanModel> cluster)
private double
CBLOF. computeSmallClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, java.util.List<NumberVector> largeClusterMeans, Cluster<MeanModel> cluster)
private void
KMeansOutlierDetection. distanceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Simple distance-based scoring function.private void
KMeansOutlierDetection. singletonsScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Distance-based scoring that takes singletons into account.private void
KMeansOutlierDetection. varianceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Variance-based scoring function.Constructors in elki.outlier.clustering with parameters of type NumberVectorDistance Constructor Description CBLOF(NumberVectorDistance<? super O> distance, ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm, double alpha, double beta)
Constructor. -
Uses of NumberVectorDistance in elki.outlier.distance
Fields in elki.outlier.distance declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>
ReferenceBasedOutlierDetection. distance
Distance function used.protected NumberVectorDistance<? super NumberVector>
ReferenceBasedOutlierDetection.Par. distance
The distance function to use.Constructors in elki.outlier.distance with parameters of type NumberVectorDistance Constructor Description ReferenceBasedOutlierDetection(int k, NumberVectorDistance<? super NumberVector> distance, ReferencePointsHeuristic refp)
Constructor with parameters. -
Uses of NumberVectorDistance in elki.outlier.lof
Fields in elki.outlier.lof declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<? super V>
ALOCI. distance
Distance function used.protected NumberVectorDistance<? super O>
ALOCI.Par. distance
The distance function to use.Constructors in elki.outlier.lof with parameters of type NumberVectorDistance Constructor Description ALOCI(NumberVectorDistance<? super V> distance, int nmin, int alpha, int g, RandomFactory rnd)
Constructor. -
Uses of NumberVectorDistance in elki.similarity
Classes in elki.similarity that implement NumberVectorDistance Modifier and Type Class Description class
Kulczynski1Similarity
Kulczynski similarity 1. -
Uses of NumberVectorDistance in tutorial.clustering
Fields in tutorial.clustering declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super V>
SameSizeKMeans.Par. distance
Distance functionMethods in tutorial.clustering with parameters of type NumberVectorDistance Modifier and Type Method Description protected void
SameSizeKMeans. updateDistances(Relation<V> relation, double[][] means, WritableDataStore<SameSizeKMeans.Meta> metas, NumberVectorDistance<? super V> df)
Compute the distances of each object to all means.Constructors in tutorial.clustering with parameters of type NumberVectorDistance Constructor Description SameSizeKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)
Constructor. -
Uses of NumberVectorDistance in tutorial.distancefunction
Classes in tutorial.distancefunction that implement NumberVectorDistance Modifier and Type Class Description class
MultiLPNorm
Tutorial example Minowski-distance variation with different exponents for different dimensions for ELKI.class
TutorialDistance
Tutorial distance function example for ELKI.
-