Uses of Interface
elki.distance.NumberVectorDistance
-
Packages that use NumberVectorDistance Package Description elki.algorithm Miscellaneous algorithms.elki.algorithm.statistics Statistical analysis algorithms.elki.clustering Clustering algorithms.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.clustering.kmedoids.initialization elki.clustering.uncertain Clustering algorithms for uncertain data.elki.distance Distance functions for use within ELKI.elki.distance.colorhistogram Distance functions for color histograms.elki.distance.correlation Distance functions using correlations.elki.distance.geo Geographic (earth) distance functions.elki.distance.histogram Distance functions for one-dimensional histograms.elki.distance.minkowski Minkowski space Lp norms such as the popular Euclidean and Manhattan distances.elki.distance.probabilistic Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence, F-divergence, χ²-divergence, etc.elki.distance.set Distance functions for binary and set type data.elki.distance.subspace Distance functions based on subspaces.elki.distance.timeseries Distance functions designed for time series.elki.evaluation.clustering.internal Internal evaluation measures for clusterings.elki.outlier.clustering Clustering based outlier detection.elki.outlier.distance Distance-based outlier detection algorithms, such as DBOutlier and kNN.elki.outlier.lof LOF family of outlier detection algorithms.elki.similarity Similarity functions.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation.tutorial.distancefunction Classes from the tutorial on implementing distance functions. -
-
Uses of NumberVectorDistance in elki.algorithm
Fields in elki.algorithm declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<? super V>DependencyDerivator. distanceDistance function used.protected NumberVectorDistance<? super V>DependencyDerivator.Par. distanceThe distance function to use.Constructors in elki.algorithm with parameters of type NumberVectorDistance Constructor Description DependencyDerivator(NumberVectorDistance<? super V> distance, java.text.NumberFormat nf, PCARunner pca, EigenPairFilter filter, int sampleSize, boolean randomsample)Constructor. -
Uses of NumberVectorDistance in elki.algorithm.statistics
Fields in elki.algorithm.statistics declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>HopkinsStatisticClusteringTendency. distanceDistance function used.protected NumberVectorDistance<? super NumberVector>HopkinsStatisticClusteringTendency.Par. distanceThe distance function to use.Constructors in elki.algorithm.statistics with parameters of type NumberVectorDistance Constructor Description HopkinsStatisticClusteringTendency(NumberVectorDistance<? super NumberVector> distance, int samplesize, RandomFactory random, int rep, int k, double[] minima, double[] maxima)Constructor. -
Uses of NumberVectorDistance in elki.clustering
Fields in elki.clustering declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super V>NaiveMeanShiftClustering. distanceDistance function used.protected NumberVectorDistance<? super V>NaiveMeanShiftClustering.Par. distanceThe distance function to use.Constructors in elki.clustering with parameters of type NumberVectorDistance Constructor Description NaiveMeanShiftClustering(NumberVectorDistance<? super V> distance, KernelDensityFunction kernel, double range)Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<?>AbstractKMeans.Instance. dfDistance function.protected NumberVectorDistance<? super V>AbstractKMeans. distanceDistance function used.protected NumberVectorDistance<? super V>AbstractKMeans.Par. distanceThe distance function to use.Methods in elki.clustering.kmeans that return NumberVectorDistance Modifier and Type Method Description NumberVectorDistance<? super V>AbstractKMeans. getDistance()NumberVectorDistance<? super V>BestOfMultipleKMeans. getDistance()NumberVectorDistance<? super V>BisectingKMeans. getDistance()NumberVectorDistance<? super V>KMeans. getDistance()Returns the distance.Methods in elki.clustering.kmeans with parameters of type NumberVectorDistance Modifier and Type Method Description voidAbstractKMeans. setDistance(NumberVectorDistance<? super V> distance)voidBestOfMultipleKMeans. setDistance(NumberVectorDistance<? super V> distance)voidBisectingKMeans. setDistance(NumberVectorDistance<? super V> distance)voidKMeans. setDistance(NumberVectorDistance<? super V> distance)Set the distance function to use.Constructors in elki.clustering.kmeans with parameters of type NumberVectorDistance Constructor Description AbstractKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.AnnulusKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.CompareMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.ElkanKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.ExponionKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.GMeans(NumberVectorDistance<? super V> distance, double critical, int k_min, int k_max, int maxiter, KMeans<V,M> innerKMeans, KMeansInitialization initializer, RandomFactory random)Constructor.HamerlyKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means, int t)Constructor.KDTreeFilteringKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, KDTreePruningKMeans.Split split, int leafsize)Constructor.KDTreePruningKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, KDTreePruningKMeans.Split split, int leafsize)Constructor.KMeansMinusMinus(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, double rate, boolean noiseFlag)Constructor.KMediansLloyd(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.LloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.MacQueenKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.ShallotKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SimplifiedElkanKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer, boolean varstat)Constructor.SingleAssignmentKMeans(NumberVectorDistance<? super V> distance, int k, KMeansInitialization initializer)Constructor.SortMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor.XMeans(NumberVectorDistance<? super V> distance, int k_min, int k_max, int maxiter, KMeans<V,M> innerKMeans, KMeansInitialization initializer, KMeansQualityMeasure<V> informationCriterion, RandomFactory random)Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans.initialization
Fields in elki.clustering.kmeans.initialization declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<?>KMC2.Instance. distanceDistance functionprotected NumberVectorDistance<?>KMeansPlusPlus.NumberVectorInstance. distanceDistance functionMethods in elki.clustering.kmeans.initialization with parameters of type NumberVectorDistance Modifier and Type Method Description double[][]AFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FarthestPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FarthestSumPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FirstK. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]KMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]KMeansInitialization. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)Choose initial meansdouble[][]KMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]Ostrovsky. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]Predefined. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomlyChosen. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomNormalGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomUniformGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SampleKMeans. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SphericalAFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SphericalKMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)Constructors in elki.clustering.kmeans.initialization with parameters of type NumberVectorDistance Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans.parallel
Fields in elki.clustering.kmeans.parallel declared as NumberVectorDistance Modifier and Type Field Description (package private) NumberVectorDistance<? super V>KMeansProcessor. distanceDistance function.private NumberVectorDistance<? super V>KMeansProcessor.Instance. distanceDistance function.Constructors in elki.clustering.kmeans.parallel with parameters of type NumberVectorDistance Constructor Description Instance(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[][] means)Constructor.KMeansProcessor(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[] varsum)Constructor.ParallelLloydKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor. -
Uses of NumberVectorDistance in elki.clustering.kmeans.quality
Methods in elki.clustering.kmeans.quality with parameters of type NumberVectorDistance Modifier and Type Method Description static doubleAbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static doubleBayesianInformationCriterionXMeans. logLikelihoodXMeans(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static doubleBayesianInformationCriterionZhao. logLikelihoodZhao(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.<V extends NumberVector>
doubleAkaikeInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleAkaikeInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterionZhao. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends O>
doubleKMeansQualityMeasure. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)Calculates and returns the quality measure.<V extends NumberVector>
doubleWithinClusterMeanDistance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleWithinClusterVariance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)static doubleAbstractKMeansQualityMeasure. varianceContributionOfCluster(Cluster<? extends MeanModel> cluster, NumberVectorDistance<?> distance, Relation<? extends NumberVector> relation)Variance contribution of a single cluster. -
Uses of NumberVectorDistance in elki.clustering.kmedoids.initialization
Methods in elki.clustering.kmedoids.initialization with parameters of type NumberVectorDistance Modifier and Type Method Description double[][]BUILD. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]LAB. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]ParkJun. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance) -
Uses of NumberVectorDistance in elki.clustering.uncertain
Constructors in elki.clustering.uncertain with parameters of type NumberVectorDistance Constructor Description CKMeans(NumberVectorDistance<? super NumberVector> distance, int k, int maxiter, KMeansInitialization initializer)Constructor that uses Lloyd's k-means algorithm. -
Uses of NumberVectorDistance in elki.distance
Subinterfaces of NumberVectorDistance in elki.distance Modifier and Type Interface Description interfaceWeightedNumberVectorDistance<V>Distance functions where each dimension is assigned a weight.Classes in elki.distance that implement NumberVectorDistance Modifier and Type Class Description classAbstractNumberVectorDistanceAbstract base class for the most common family of distance functions: defined on number vectors and returning double values.classArcCosineDistanceArcus cosine distance function for feature vectors.classArcCosineUnitlengthDistanceArcus cosine distance function for feature vectors.classBrayCurtisDistanceBray-Curtis distance function / Sørensen–Dice coefficient for continuous vector spaces (not only binary data).classCanberraDistanceCanberra distance function, a variation of Manhattan distance.classClarkDistanceClark distance function for vector spaces.classCosineDistanceCosine distance function for feature vectors.classCosineUnitlengthDistanceCosine distance function for unit length feature vectors.classMahalanobisDistanceMahalanobis quadratic form distance for feature vectors.classMatrixWeightedQuadraticDistanceMatrix weighted quadratic distance, the squared form ofMahalanobisDistance.classSqrtCosineDistanceCosine distance function for feature vectors using the square root.classSqrtCosineUnitlengthDistanceCosine distance function for unit length feature vectors using the square root.classWeightedCanberraDistanceWeighted Canberra distance function, a variation of Manhattan distance. -
Uses of NumberVectorDistance in elki.distance.colorhistogram
Classes in elki.distance.colorhistogram that implement NumberVectorDistance Modifier and Type Class Description classHistogramIntersectionDistanceIntersection distance for color histograms.classHSBHistogramQuadraticDistanceDistance function for HSB color histograms based on a quadratic form and color similarity.classRGBHistogramQuadraticDistanceDistance function for RGB color histograms based on a quadratic form and color similarity. -
Uses of NumberVectorDistance in elki.distance.correlation
Classes in elki.distance.correlation that implement NumberVectorDistance Modifier and Type Class Description classAbsolutePearsonCorrelationDistanceAbsolute Pearson correlation distance function for feature vectors.classAbsoluteUncenteredCorrelationDistanceAbsolute uncentered correlation distance function for feature vectors.classPearsonCorrelationDistancePearson correlation distance function for feature vectors.classSquaredPearsonCorrelationDistanceSquared Pearson correlation distance function for feature vectors.classSquaredUncenteredCorrelationDistanceSquared uncentered correlation distance function for feature vectors.classUncenteredCorrelationDistanceUncentered correlation distance.classWeightedPearsonCorrelationDistancePearson correlation distance function for feature vectors.classWeightedSquaredPearsonCorrelationDistanceWeighted squared Pearson correlation distance function for feature vectors. -
Uses of NumberVectorDistance in elki.distance.geo
Classes in elki.distance.geo that implement NumberVectorDistance Modifier and Type Class Description classDimensionSelectingLatLngDistanceDistance function for 2D vectors in Latitude, Longitude form.classLatLngDistanceDistance function for 2D vectors in Latitude, Longitude form.classLngLatDistanceDistance function for 2D vectors in Longitude, Latitude form. -
Uses of NumberVectorDistance in elki.distance.histogram
Classes in elki.distance.histogram that implement NumberVectorDistance Modifier and Type Class Description classHistogramMatchDistanceDistance function based on histogram matching, i.e., Manhattan distance on the cumulative density function.classKolmogorovSmirnovDistanceDistance function based on the Kolmogorov-Smirnov goodness of fit test. -
Uses of NumberVectorDistance in elki.distance.minkowski
Classes in elki.distance.minkowski that implement NumberVectorDistance Modifier and Type Class Description classEuclideanDistanceEuclidean distance forNumberVectors.classLPIntegerNormDistanceLp-Norm forNumberVectors, optimized version for integer values of p.classLPNormDistanceLp-Norm (Minkowski norms) are a family of distances forNumberVectors.classManhattanDistanceManhattan distance forNumberVectors.classMaximumDistanceMaximum distance forNumberVectors.classMinimumDistanceMinimum distance forNumberVectors.classSquaredEuclideanDistanceSquared Euclidean distance, optimized forSparseNumberVectors.classWeightedEuclideanDistanceWeighted Euclidean distance forNumberVectors.classWeightedLPNormDistanceWeighted version of the Minkowski Lp norm distance forNumberVector.classWeightedManhattanDistanceWeighted version of the Manhattan (L1) metric.classWeightedMaximumDistanceWeighted version of the maximum distance function forNumberVectors.classWeightedSquaredEuclideanDistanceWeighted squared Euclidean distance forNumberVectors. -
Uses of NumberVectorDistance in elki.distance.probabilistic
Classes in elki.distance.probabilistic that implement NumberVectorDistance Modifier and Type Class Description classChiDistanceχ distance function, symmetric version.classChiSquaredDistanceχ² distance function, symmetric version.classFisherRaoDistanceFisher-Rao riemannian metric for (discrete) probability distributions.classHellingerDistanceHellinger metric / affinity / kernel, Bhattacharyya coefficient, fidelity similarity, Matusita distance, Hellinger-Kakutani metric on a probability distribution.classJeffreyDivergenceDistanceJeffrey Divergence forNumberVectors is a symmetric, smoothened version of theKullbackLeiblerDivergenceAsymmetricDistance.classJensenShannonDivergenceDistanceJensen-Shannon Divergence forNumberVectors is a symmetric, smoothened version of theKullbackLeiblerDivergenceAsymmetricDistance.classKullbackLeiblerDivergenceAsymmetricDistanceKullback-Leibler divergence, also known as relative entropy, information deviation, or just KL-distance (albeit asymmetric).classKullbackLeiblerDivergenceReverseAsymmetricDistanceKullback-Leibler divergence, also known as relative entropy, information deviation or just KL-distance (albeit asymmetric).classSqrtJensenShannonDivergenceDistanceThe square root of Jensen-Shannon divergence is a metric.classTriangularDiscriminationDistanceTriangular Discrimination has relatively tight upper and lower bounds to the Jensen-Shannon divergence, but is much less expensive.classTriangularDistanceTriangular Distance has relatively tight upper and lower bounds to the (square root of the) Jensen-Shannon divergence, but is much less expensive. -
Uses of NumberVectorDistance in elki.distance.set
Classes in elki.distance.set that implement NumberVectorDistance Modifier and Type Class Description classHammingDistanceComputes the Hamming distance of arbitrary vectors - i.e. counting, on how many places they differ.classJaccardSimilarityDistanceA flexible extension of Jaccard similarity to non-binary vectors. -
Uses of NumberVectorDistance in elki.distance.subspace
Classes in elki.distance.subspace that implement NumberVectorDistance Modifier and Type Class Description classOnedimensionalDistanceDistance function that computes the distance between feature vectors as the absolute difference of their values in a specified dimension only.classSubspaceEuclideanDistanceEuclidean distance function betweenNumberVectors only in specified dimensions.classSubspaceLPNormDistanceLp-Norm distance function betweenNumberVectors only in specified dimensions.classSubspaceManhattanDistanceManhattan distance function betweenNumberVectors only in specified dimensions.classSubspaceMaximumDistanceMaximum distance function betweenNumberVectors only in specified dimensions. -
Uses of NumberVectorDistance in elki.distance.timeseries
Classes in elki.distance.timeseries that implement NumberVectorDistance Modifier and Type Class Description classAbstractEditDistanceEdit Distance for FeatureVectors.classDerivativeDTWDistanceDerivative Dynamic Time Warping distance for numerical vectors.classDTWDistanceDynamic Time Warping distance (DTW) for numerical vectors.classEDRDistanceEdit Distance on Real Sequence distance for numerical vectors.classERPDistanceEdit Distance With Real Penalty distance for numerical vectors.classLCSSDistanceLongest Common Subsequence distance for numerical vectors. -
Uses of NumberVectorDistance in elki.evaluation.clustering.internal
Fields in elki.evaluation.clustering.internal declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<?>ClusterRadius. distanceDistance function to use.private NumberVectorDistance<?>ClusterRadius.Par. distanceDistance function to use.private NumberVectorDistance<?>DaviesBouldinIndex. distanceDistance function to use.private NumberVectorDistance<?>DaviesBouldinIndex.Par. distanceDistance function to use.private NumberVectorDistance<?>PBMIndex. distanceDistance function to use.private NumberVectorDistance<?>PBMIndex.Par. distanceDistance function to use.private NumberVectorDistance<?>SimplifiedSilhouette. distanceDistance function to use.private NumberVectorDistance<?>SimplifiedSilhouette.Par. distanceDistance function to use.private NumberVectorDistance<?>SquaredErrors. distanceDistance function to use.private NumberVectorDistance<?>SquaredErrors.Par. distanceDistance function to use.Constructors in elki.evaluation.clustering.internal with parameters of type NumberVectorDistance Constructor Description ClusterRadius(NumberVectorDistance<?> distance, NoiseHandling noiseOption)Constructor.DaviesBouldinIndex(NumberVectorDistance<?> distance, NoiseHandling noiseOpt, double p)Constructor.PBMIndex(NumberVectorDistance<?> distance, NoiseHandling noiseOpt)Constructor.SimplifiedSilhouette(NumberVectorDistance<?> distance, NoiseHandling noiseOpt, boolean penalize)Constructor.SquaredErrors(NumberVectorDistance<?> distance, NoiseHandling noiseOption)Constructor. -
Uses of NumberVectorDistance in elki.outlier.clustering
Fields in elki.outlier.clustering declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super O>CBLOF. distanceDistance function used.protected NumberVectorDistance<? super O>CBLOF.Par. distanceDistance function to use.Methods in elki.outlier.clustering with parameters of type NumberVectorDistance Modifier and Type Method Description private doubleCBLOF. computeLargeClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, NumberVector clusterMean, Cluster<MeanModel> cluster)private doubleCBLOF. computeSmallClusterCBLOF(O obj, NumberVectorDistance<? super O> distance, java.util.List<NumberVector> largeClusterMeans, Cluster<MeanModel> cluster)private voidKMeansOutlierDetection. distanceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)Simple distance-based scoring function.private voidKMeansOutlierDetection. singletonsScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)Distance-based scoring that takes singletons into account.private voidKMeansOutlierDetection. varianceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)Variance-based scoring function.Constructors in elki.outlier.clustering with parameters of type NumberVectorDistance Constructor Description CBLOF(NumberVectorDistance<? super O> distance, ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm, double alpha, double beta)Constructor. -
Uses of NumberVectorDistance in elki.outlier.distance
Fields in elki.outlier.distance declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>ReferenceBasedOutlierDetection. distanceDistance function used.protected NumberVectorDistance<? super NumberVector>ReferenceBasedOutlierDetection.Par. distanceThe distance function to use.Constructors in elki.outlier.distance with parameters of type NumberVectorDistance Constructor Description ReferenceBasedOutlierDetection(int k, NumberVectorDistance<? super NumberVector> distance, ReferencePointsHeuristic refp)Constructor with parameters. -
Uses of NumberVectorDistance in elki.outlier.lof
Fields in elki.outlier.lof declared as NumberVectorDistance Modifier and Type Field Description private NumberVectorDistance<? super V>ALOCI. distanceDistance function used.protected NumberVectorDistance<? super O>ALOCI.Par. distanceThe distance function to use.Constructors in elki.outlier.lof with parameters of type NumberVectorDistance Constructor Description ALOCI(NumberVectorDistance<? super V> distance, int nmin, int alpha, int g, RandomFactory rnd)Constructor. -
Uses of NumberVectorDistance in elki.similarity
Classes in elki.similarity that implement NumberVectorDistance Modifier and Type Class Description classKulczynski1SimilarityKulczynski similarity 1. -
Uses of NumberVectorDistance in tutorial.clustering
Fields in tutorial.clustering declared as NumberVectorDistance Modifier and Type Field Description protected NumberVectorDistance<? super V>SameSizeKMeans.Par. distanceDistance functionMethods in tutorial.clustering with parameters of type NumberVectorDistance Modifier and Type Method Description protected voidSameSizeKMeans. updateDistances(Relation<V> relation, double[][] means, WritableDataStore<SameSizeKMeans.Meta> metas, NumberVectorDistance<? super V> df)Compute the distances of each object to all means.Constructors in tutorial.clustering with parameters of type NumberVectorDistance Constructor Description SameSizeKMeans(NumberVectorDistance<? super V> distance, int k, int maxiter, KMeansInitialization initializer)Constructor. -
Uses of NumberVectorDistance in tutorial.distancefunction
Classes in tutorial.distancefunction that implement NumberVectorDistance Modifier and Type Class Description classMultiLPNormTutorial example Minowski-distance variation with different exponents for different dimensions for ELKI.classTutorialDistanceTutorial distance function example for ELKI.
-