A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
K
- k - Variable in class elki.algorithm.KNNDistancesSampler
-
Parameter k.
- k - Variable in class elki.algorithm.KNNDistancesSampler.Par
-
Parameter k.
- k - Variable in class elki.algorithm.KNNJoin
-
The k parameter.
- k - Variable in class elki.algorithm.KNNJoin.Par
-
K parameter.
- k - Variable in class elki.algorithm.statistics.AveragePrecisionAtK
-
The parameter k - the number of neighbors to retrieve.
- k - Variable in class elki.algorithm.statistics.HopkinsStatisticClusteringTendency
-
Nearest neighbor to use.
- k - Variable in class elki.algorithm.statistics.HopkinsStatisticClusteringTendency.Par
-
Nearest neighbor number.
- k - Variable in class elki.application.benchmark.KNNBenchmark
-
Number of neighbors to retrieve.
- k - Variable in class elki.application.benchmark.PrioritySearchBenchmark
-
Number of neighbors to retrieve.
- k - Variable in class elki.application.benchmark.ValidateApproximativeKNNIndex
-
Number of neighbors to retrieve.
- k - Variable in class elki.application.cache.CacheDoubleDistanceKNNLists
-
Number of neighbors to precompute.
- k - Variable in class elki.application.cache.CacheDoubleDistanceKNNLists.Par
-
Number of neighbors to precompute.
- k - Variable in class elki.application.experiments.ORLibBenchmark
-
Number of clusters override (optional)
- k - Variable in class elki.application.experiments.ORLibBenchmark.Par
-
Number of clusters override (optional)
- k - Variable in class elki.classification.KNNClassifier
-
Holds the value of @link #K_PARAM}.
- k - Variable in class elki.clustering.AbstractProjectedClustering
-
The number of clusters to find
- k - Variable in class elki.clustering.AbstractProjectedClustering.Par
-
The number of clusters to find
- k - Variable in class elki.clustering.CFSFDP
-
Number of clusters to find.
- k - Variable in class elki.clustering.CFSFDP.Par
-
Number of clusters to find.
- k - Variable in class elki.clustering.correlation.COPAC.Settings
-
Neighborhood size.
- k - Variable in class elki.clustering.correlation.ERiC.Settings
-
Neighborhood size.
- k - Variable in class elki.clustering.correlation.HiCO
-
Number of neighbors to query.
- k - Variable in class elki.clustering.correlation.HiCO.Par
-
Number of neighbors to query.
- k - Variable in class elki.clustering.dbscan.LSDBC.Par
-
kNN parameter.
- k - Variable in class elki.clustering.em.BetulaGMM
-
Number of cluster centers to initialize.
- k - Variable in class elki.clustering.em.BetulaGMM.Par
-
k Parameter.
- k - Variable in class elki.clustering.em.EM
-
Number of clusters
- k - Variable in class elki.clustering.em.EM.Par
-
Number of clusters.
- k - Variable in class elki.clustering.em.KDTreeEM
-
number of models
- k - Variable in class elki.clustering.em.KDTreeEM.Par
-
Number of clusters.
- k - Variable in class elki.clustering.hierarchical.birch.BIRCHLloydKMeans
-
Number of cluster centers to initialize.
- k - Variable in class elki.clustering.hierarchical.birch.BIRCHLloydKMeans.Par
-
k Parameter.
- k - Variable in class elki.clustering.kcenter.GreedyKCenter
-
number of clusters
- k - Variable in class elki.clustering.kcenter.GreedyKCenter.Par
-
number of clusters
- k - Variable in class elki.clustering.kmeans.AbstractKMeans.Instance
-
Number of clusters.
- k - Variable in class elki.clustering.kmeans.AbstractKMeans
-
Number of cluster centers to initialize.
- k - Variable in class elki.clustering.kmeans.AbstractKMeans.Par
-
k Parameter.
- k - Variable in class elki.clustering.kmeans.BisectingKMeans
-
Desired value of k.
- k - Variable in class elki.clustering.kmeans.FuzzyCMeans
-
Number of clusters
- k - Variable in class elki.clustering.kmeans.FuzzyCMeans.Par
-
Number of clusters.
- k - Variable in class elki.clustering.kmedoids.AlternatingKMedoids
-
Number of clusters to find.
- k - Variable in class elki.clustering.kmedoids.AlternatingKMedoids.Par
-
The number of clusters to find
- k - Variable in class elki.clustering.kmedoids.CLARANS
-
Number of clusters to find.
- k - Variable in class elki.clustering.kmedoids.CLARANS.Par
-
Number of cluster centers to find.
- k - Variable in class elki.clustering.kmedoids.PAM
-
The number of clusters to produce.
- k - Variable in class elki.clustering.kmedoids.PAM.Par
-
The number of clusters to produce.
- k - Variable in class elki.clustering.onedimensional.KNNKernelDensityMinimaClustering
-
Number of neighbors to use for bandwidth.
- k - Variable in class elki.clustering.onedimensional.KNNKernelDensityMinimaClustering.Par
-
Number of neighbors to use for bandwidth.
- k - Variable in class elki.clustering.subspace.HiSC
-
The number of nearest neighbors considered to determine the preference vector.
- k - Variable in class elki.clustering.subspace.HiSC.Par
-
The number of nearest neighbors considered to determine the preference vector.
- k - Variable in class elki.clustering.uncertain.UKMeans
-
Number of cluster centers to initialize.
- k - Variable in class elki.clustering.uncertain.UKMeans.Par
-
Number of cluster centers to initialize.
- k - Variable in class elki.data.projection.random.SimplifiedRandomHyperplaneProjectionFamily.SignedProjection
-
Output dimensionality
- k - Variable in class elki.database.ids.integer.DoubleIntegerDBIDKNNHeap
-
k for this heap.
- k - Variable in class elki.database.ids.integer.DoubleIntegerDBIDKNNList
-
The k value this list was generated for.
- k - Variable in class elki.database.ids.integer.IntegerDBIDKNNSubList
-
Parameter k.
- k - Variable in class elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter
-
Holds the desired cardinality of the subset of attributes selected for projection.
- k - Variable in class elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter.Par
-
Number of attributes to select.
- k - Variable in class elki.evaluation.scores.PrecisionAtKEvaluation
-
Parameter k.
- k - Variable in class elki.evaluation.scores.PrecisionAtKEvaluation.Par
-
K parameter
- k - Variable in class elki.index.idistance.InMemoryIDistanceIndex.Factory
-
Number of reference points
- k - Variable in class elki.index.laesa.LAESA.Factory
-
Condition parameter
- k - Variable in class elki.index.laesa.LAESA.Factory.Par
-
condition parameter
- k - Variable in class elki.index.laesa.LAESA
-
Condition parameter
- k - Variable in class elki.index.lsh.hashfamilies.AbstractProjectedHashFunctionFamily
-
The number of projections to use for each hash function.
- k - Variable in class elki.index.lsh.hashfamilies.AbstractProjectedHashFunctionFamily.Par
-
The number of projections to use for each hash function.
- k - Variable in class elki.index.lsh.hashfamilies.CosineHashFunctionFamily
-
The number of projections to use for each hash function.
- k - Variable in class elki.index.lsh.hashfamilies.CosineHashFunctionFamily.Par
-
The number of projections to use for each hash function.
- k - Variable in class elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
-
Holds the value of
AbstractMaterializeKNNPreprocessor.Factory.K_ID
. - k - Variable in class elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor
-
The query k value.
- k - Variable in class elki.math.statistics.distribution.ExpGammaDistribution
-
Alpha == k.
- k - Variable in class elki.math.statistics.distribution.ExpGammaDistribution.Par
-
Alpha == k.
- k - Variable in class elki.math.statistics.distribution.GammaDistribution
-
Alpha == k
- k - Variable in class elki.math.statistics.distribution.GammaDistribution.Par
-
Parameters.
- k - Variable in class elki.math.statistics.distribution.GeneralizedExtremeValueDistribution
-
Parameters (location, scale, shape)
- k - Variable in class elki.math.statistics.distribution.GeneralizedExtremeValueDistribution.Par
-
Parameters.
- k - Variable in class elki.math.statistics.distribution.LogGammaDistribution
-
Alpha == k.
- k - Variable in class elki.math.statistics.distribution.LogGammaDistribution.Par
-
Parameters.
- k - Variable in class elki.math.statistics.distribution.WeibullDistribution
-
Shape parameter k.
- k - Variable in class elki.math.statistics.distribution.WeibullDistribution.Par
-
Parameters.
- k - Variable in class elki.outlier.anglebased.FastABOD
-
Number of nearest neighbors.
- k - Variable in class elki.outlier.anglebased.FastABOD.Par
-
Number of neighbors.
- k - Variable in class elki.outlier.clustering.EMOutlier
-
Number of clusters
- k - Variable in class elki.outlier.clustering.EMOutlier.Par
-
Number of clusters.
- k - Variable in class elki.outlier.COP
-
Number of neighbors to be considered.
- k - Variable in class elki.outlier.COP.Par
-
Number of neighbors to be considered.
- k - Variable in class elki.outlier.distance.HilOut
-
Number of nearest neighbors
- k - Variable in class elki.outlier.distance.KNNDD.Par
-
k parameter
- k - Variable in class elki.outlier.distance.KNNOutlier.Par
-
k parameter
- k - Variable in class elki.outlier.distance.KNNSOS
-
Number of neighbors (not including query point).
- k - Variable in class elki.outlier.distance.KNNWeightOutlier.Par
-
k parameter
- k - Variable in class elki.outlier.distance.LocalIsolationCoefficient.Par
-
k parameter
- k - Variable in class elki.outlier.distance.parallel.KNNWeightProcessor.Instance
-
k Parameter
- k - Variable in class elki.outlier.distance.parallel.KNNWeightProcessor
-
K parameter
- k - Variable in class elki.outlier.distance.ReferenceBasedOutlierDetection
-
Holds the number of neighbors to use for density estimation.
- k - Variable in class elki.outlier.distance.ReferenceBasedOutlierDetection.Par
-
Number of nearest neighbors.
- k - Variable in class elki.outlier.intrinsic.ISOS
-
Number of neighbors (not including query point).
- k - Variable in class elki.outlier.intrinsic.LID.Par
-
Number of neighbors to use for ID estimation.
- k - Variable in class elki.outlier.lof.COF
-
The number of neighbors to query (including the query point!)
- k - Variable in class elki.outlier.lof.INFLO.Par
-
Number of neighbors to use.
- k - Variable in class elki.outlier.lof.LDOF.Par
-
Number of neighbors to use
- k - Variable in class elki.outlier.meta.FeatureBagging
-
The parameters k for LOF.
- k - Variable in class elki.outlier.meta.FeatureBagging.Par
-
The neighborhood size to use.
- k - Variable in class elki.outlier.SimpleCOP.Par
-
Number of neighbors to be considered.
- k - Variable in class elki.outlier.spatial.CTLuGLSBackwardSearchAlgorithm
-
Parameter k - neighborhood size
- k - Variable in class elki.outlier.spatial.CTLuRandomWalkEC
-
Parameter k.
- k - Variable in class elki.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory
-
parameter k
- k - Variable in class elki.outlier.subspace.AbstractAggarwalYuOutlier
-
The target dimensionality.
- k - Variable in class elki.outlier.subspace.AbstractAggarwalYuOutlier.Par
-
k Parameter.
- k - Variable in class elki.parallel.processor.KDistanceProcessor.Instance
-
k Parameter
- k - Variable in class elki.parallel.processor.KDistanceProcessor
-
K parameter
- k - Variable in class elki.parallel.processor.KNNProcessor.Instance
-
k Parameter
- k - Variable in class elki.parallel.processor.KNNProcessor
-
K parameter
- k - Variable in class elki.utilities.scaling.outlier.OutlierGammaScaling
-
Gamma parameter k
- k - Variable in class elki.utilities.scaling.outlier.TopKOutlierScaling
-
Number of outliers to keep.
- k - Variable in class elki.utilities.scaling.outlier.TopKOutlierScaling.Par
-
Number of outliers to keep.
- k - Variable in class tutorial.clustering.CFSFDP
-
Number of clusters to find.
- k - Variable in class tutorial.clustering.CFSFDP.Par
-
Number of clusters to find.
- k - Variable in class tutorial.clustering.SameSizeKMeans.Par
-
k Parameter.
- k - Variable in class tutorial.outlier.DistanceStddevOutlier
-
Number of neighbors to get.
- k_0 - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
-
The start value for k.
- k_c - Variable in class elki.outlier.intrinsic.IDOS
-
kNN for the context set (ID computation).
- k_c - Variable in class elki.outlier.intrinsic.IDOS.Par
-
kNN for the context set (ID computation).
- k_i - Variable in class elki.clustering.AbstractProjectedClustering
-
Multiplier for the number of initial seeds
- k_i - Variable in class elki.clustering.AbstractProjectedClustering.Par
-
Multiplier for the number of initial seeds
- K_I_ID - Static variable in class elki.clustering.AbstractProjectedClustering.Par
-
Parameter to specify the multiplier for the initial number of seeds, must be an integer greater than 0.
- K_ID - Static variable in class elki.algorithm.KNNDistancesSampler.Par
-
Parameter to specify the distance of the k-distant object to be assessed, must be an integer greater than 0.
- K_ID - Static variable in class elki.algorithm.KNNJoin.Par
-
Parameter that specifies the k-nearest neighbors to be assigned, must be an integer greater than 0.
- K_ID - Static variable in class elki.algorithm.statistics.HopkinsStatisticClusteringTendency.Par
-
Parameter for k.
- K_ID - Static variable in class elki.application.cache.CacheDoubleDistanceKNNLists.Par
-
Parameter that specifies the number of neighbors to precompute.
- K_ID - Static variable in class elki.clustering.AbstractProjectedClustering.Par
-
Parameter to specify the number of clusters to find, must be an integer greater than 0.
- K_ID - Static variable in class elki.clustering.CFSFDP.Par
-
Number of clusters parameter
- K_ID - Static variable in class elki.clustering.correlation.COPAC.Par
-
Size for the kNN neighborhood used in the PCA step of COPAC.
- K_ID - Static variable in class elki.clustering.correlation.ERiC.Par
-
Size for the kNN neighborhood used in the PCA step of ERiC.
- K_ID - Static variable in class elki.clustering.correlation.HiCO.Par
-
Optional parameter to specify the number of nearest neighbors considered in the PCA, must be an integer greater than 0.
- K_ID - Static variable in class elki.clustering.dbscan.LSDBC.Par
-
Parameter for neighborhood size.
- K_ID - Static variable in class elki.clustering.em.EM.Par
-
Parameter to specify the number of clusters to find.
- K_ID - Static variable in class elki.clustering.em.KDTreeEM.Par
-
Parameter to specify the number of clusters to find.
- K_ID - Static variable in class elki.clustering.hierarchical.extraction.ClustersWithNoiseExtraction.Par
-
The number of clusters to extract.
- K_ID - Static variable in class elki.clustering.kcenter.GreedyKCenter.Par
-
Parameter to specify the number of clusters
- K_ID - Static variable in class elki.clustering.kmeans.FuzzyCMeans.Par
-
Parameter to specify the number of clusters to find, must be an integer greater than 0.
- K_ID - Static variable in interface elki.clustering.kmeans.KMeans
-
Parameter to specify the number of clusters to find, must be an integer greater than 0.
- K_ID - Static variable in class elki.clustering.onedimensional.KNNKernelDensityMinimaClustering.Par
-
Number of neighbors for bandwidth estimation.
- K_ID - Static variable in class elki.clustering.subspace.HiSC.Par
-
The number of nearest neighbors considered to determine the preference vector.
- K_ID - Static variable in class elki.evaluation.scores.PrecisionAtKEvaluation.Par
-
Option ID for the k parameter.
- K_ID - Static variable in class elki.index.laesa.LAESA.Factory.Par
-
Condition parameter.
- K_ID - Static variable in class elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
-
Parameter to specify the number of nearest neighbors of an object to be materialized. must be an integer greater than 1.
- K_ID - Static variable in class elki.index.tree.spatial.rstarvariants.rdknn.RdKNNTreeFactory
-
Parameter for k
- K_ID - Static variable in class elki.math.statistics.distribution.ExpGammaDistribution.Par
-
k parameter, same as
GammaDistribution.Par.K_ID
. - K_ID - Static variable in class elki.math.statistics.distribution.GammaDistribution.Par
-
K parameter.
- K_ID - Static variable in class elki.outlier.anglebased.FastABOD.Par
-
Parameter for the nearest neighbors.
- K_ID - Static variable in class elki.outlier.COP.Par
-
Parameter to specify the number of nearest neighbors of an object to be considered for computing its score, must be an integer greater than 0.
- K_ID - Static variable in class elki.outlier.distance.KNNDD.Par
-
Parameter to specify the k nearest neighbor
- K_ID - Static variable in class elki.outlier.distance.KNNOutlier.Par
-
Parameter to specify the k nearest neighbor
- K_ID - Static variable in class elki.outlier.distance.KNNWeightOutlier.Par
-
Parameter to specify the k nearest neighbor.
- K_ID - Static variable in class elki.outlier.distance.LocalIsolationCoefficient.Par
-
Parameter to specify the k nearest neighbor.
- K_ID - Static variable in class elki.outlier.distance.ReferenceBasedOutlierDetection.Par
-
The number of nearest neighbors of an object, to be considered for computing its REFOD_SCORE, must be an integer greater than 1.
- K_ID - Static variable in class elki.outlier.intrinsic.LID.Par
-
Parameter for the number of neighbors.
- K_ID - Static variable in class elki.outlier.lof.INFLO.Par
-
Parameter to specify the number of nearest neighbors of an object to be considered for computing its INFLO score.
- K_ID - Static variable in class elki.outlier.lof.LDOF.Par
-
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LDOF_SCORE, must be an integer greater than 1.
- K_ID - Static variable in class elki.outlier.SimpleCOP.Par
-
Parameter to specify the number of nearest neighbors of an object to be considered for computing its COP_SCORE, must be an integer greater than 0.
- K_ID - Static variable in class elki.outlier.subspace.AbstractAggarwalYuOutlier.Par
-
OptionID for the target dimensionality.
- K_ID - Static variable in class elki.utilities.scaling.outlier.TopKOutlierScaling.Par
-
Parameter to specify the number of outliers to keep
- K_ID - Static variable in class tutorial.clustering.CFSFDP.Par
-
Number of clusters parameter.
- k_max - Variable in class elki.clustering.kmeans.XMeans
-
Effective number of clusters, minimum and maximum.
- k_max - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.MkTreeHeader
-
The maximum number k of reverse kNN queries to be supported.
- k_max - Variable in class elki.index.tree.spatial.rstarvariants.rdknn.RdkNNSettings
-
Parameter k.
- k_max - Variable in class elki.index.tree.spatial.rstarvariants.rdknn.RdKNNTreeHeader
-
The maximum number k of reverse kNN queries to be supported.
- K_MAX_ID - Static variable in class elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnifiedFactory.Par
-
Parameter specifying the maximal number k of reverse k nearest neighbors to be supported, must be an integer greater than 0.
- k_min - Variable in class elki.clustering.kmeans.XMeans
-
Effective number of clusters, minimum and maximum.
- k_r - Variable in class elki.outlier.intrinsic.IDOS
-
kNN for the reference set.
- k_r - Variable in class elki.outlier.intrinsic.IDOS.Par
-
kNN for the reference set.
- K_S_CRITICAL001 - Static variable in class elki.outlier.subspace.OUTRES
-
Constant for Kolmogorov-Smirnov at alpha=0.01 (table value)
- kappa - Variable in class elki.clustering.correlation.FourC.Settings
-
Kappa penalty parameter, to punish deviation in low-variance Eigenvectors.
- kappa - Variable in class elki.clustering.subspace.PreDeCon.Settings
-
The kappa penality factor for deviations in preferred dimensions.
- KAPPA - Static variable in class elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
-
Kappa constant.
- KAPPA_DEFAULT - Static variable in class elki.clustering.correlation.FourC.Settings.Par
-
Default for kappa parameter.
- KAPPA_DEFAULT - Static variable in class elki.clustering.subspace.PreDeCon.Settings.Par
-
Default for kappa parameter.
- KAPPA_ID - Static variable in class elki.clustering.correlation.FourC.Settings.Par
-
Parameter Kappa: penalty for deviations in preferred dimensions.
- KAPPA_ID - Static variable in class elki.clustering.subspace.PreDeCon.Settings.Par
-
Parameter Kappa: penalty for deviations in preferred dimensions.
- KappaDistribution - Class in elki.math.statistics.distribution
-
Kappa distribution, by Hosking.
- KappaDistribution(double, double, double, double) - Constructor for class elki.math.statistics.distribution.KappaDistribution
-
Constructor.
- KappaDistribution.Par - Class in elki.math.statistics.distribution
-
Parameterization class
- KC_ID - Static variable in class elki.outlier.intrinsic.IDOS.Par
-
Parameter to specify the number of nearest neighbors of an object to be used for the GED computation.
- kcomp - Variable in class elki.outlier.lof.LoOP
-
Comparison neighborhood size.
- KDDCLIApplication - Class in elki.application
-
Basic command line application for Knowledge Discovery in Databases use cases.
- KDDCLIApplication(KDDTask) - Constructor for class elki.application.KDDCLIApplication
-
Constructor.
- KDDCLIApplication.Par - Class in elki.application
-
Parameterization class.
- KDDTask - Class in elki
-
KDDTask encapsulates the common workflow of an unsupervised knowledge discovery task.
- KDDTask(InputStep, AlgorithmStep, EvaluationStep, OutputStep, Collection<TrackedParameter>) - Constructor for class elki.KDDTask
-
Constructor.
- KDDTask.Par - Class in elki
-
Parameterization class.
- KDEOS<O> - Class in elki.outlier.lof
-
Generalized Outlier Detection with Flexible Kernel Density Estimates.
- KDEOS(Distance<? super O>, int, int, KernelDensityFunction, double, double, int) - Constructor for class elki.outlier.lof.KDEOS
-
Constructor.
- kdIndex - Variable in class elki.database.query.EmpiricalQueryOptimizer
-
k-d-tree index class.
- kdist - Variable in class elki.database.ids.integer.DoubleIntegerDBIDKNNHeap
-
Current maximum value.
- KDistanceProcessor - Class in elki.parallel.processor
-
Compute the kNN distance for each object.
- KDistanceProcessor(int) - Constructor for class elki.parallel.processor.KDistanceProcessor
-
Constructor.
- KDistanceProcessor.Instance - Class in elki.parallel.processor
-
Instance for precomputing the kNN.
- kdists - Variable in class elki.outlier.lof.parallel.LRDProcessor
-
k-distance store
- kdKNNSearch(int, int, int, O, KNNHeap, DBIDArrayIter, double[], double, double) - Method in class elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeKNNSearcher
-
Perform a kNN search on the k-d-tree.
- kdKNNSearch(int, int, int, O, KNNHeap, DoubleDBIDListIter, double[], double, double) - Method in class elki.index.tree.spatial.kd.SmallMemoryKDTree.KDTreeKNNSearcher
-
Perform a kNN search on the k-d-tree.
- kdKNNSearch(Object, O, KNNHeap, DBIDArrayIter, double[], double, double) - Method in class elki.index.tree.spatial.kd.MemoryKDTree.KDTreeKNNSearcher
-
Perform a kNN search on the k-d-tree.
- KDNode(int, double, Object, Object) - Constructor for class elki.index.tree.spatial.kd.MemoryKDTree.KDNode
-
Constructor.
- KDNode(Relation<? extends NumberVector>, DBIDArrayIter, int, int) - Constructor for class elki.clustering.kmeans.KDTreePruningKMeans.KDNode
-
Constructor.
- kdRangeSearch(int, int, int, O, ModifiableDoubleDBIDList, DBIDArrayIter, double[], double, double) - Method in class elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeRangeSearcher
-
Perform a range search on the k-d-tree.
- kdRangeSearch(int, int, int, O, ModifiableDoubleDBIDList, DoubleDBIDListIter, double[], double, double) - Method in class elki.index.tree.spatial.kd.SmallMemoryKDTree.KDTreeRangeSearcher
-
Perform a range search on the k-d-tree.
- kdRangeSearch(Object, O, ModifiableDoubleDBIDList, DBIDArrayIter, double[], double, double) - Method in class elki.index.tree.spatial.kd.MemoryKDTree.KDTreeRangeSearcher
-
Perform a range search on the k-d-tree.
- KDTree(Relation<? extends NumberVector>, ArrayModifiableDBIDs, int, int, double[], double) - Constructor for class elki.clustering.em.KDTreeEM.KDTree
-
Constructor for a KDTree with statistics needed for KDTreeEM calculation.
- KDTreeEM - Class in elki.clustering.em
-
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian Mixture Modeling (GMM), calculated on a kd-tree.
- KDTreeEM(int, double, double, double, double, TextbookMultivariateGaussianModelFactory, int, int, boolean, boolean) - Constructor for class elki.clustering.em.KDTreeEM
-
Constructor.
- KDTreeEM.KDTree - Class in elki.clustering.em
-
KDTree class with the statistics needed for EM clustering.
- KDTreeEM.Par - Class in elki.clustering.em
-
Parameterization class.
- KDTreeFilteringKMeans<V extends NumberVector> - Class in elki.clustering.kmeans
-
Filtering or "blacklisting" K-means with k-d-tree acceleration.
- KDTreeFilteringKMeans(NumberVectorDistance<? super V>, int, int, KMeansInitialization, KDTreePruningKMeans.Split, int) - Constructor for class elki.clustering.kmeans.KDTreeFilteringKMeans
-
Constructor.
- KDTreeFilteringKMeans.Instance - Class in elki.clustering.kmeans
-
Inner instance, storing state for a single data set.
- KDTreeFilteringKMeans.Par<V extends NumberVector> - Class in elki.clustering.kmeans
-
Parameterization class.
- KDTreeKNNSearcher(PartialDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.MemoryKDTree.KDTreeKNNSearcher
-
Constructor.
- KDTreeKNNSearcher(PartialDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeKNNSearcher
-
Constructor.
- KDTreeKNNSearcher(PartialDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.SmallMemoryKDTree.KDTreeKNNSearcher
-
Constructor.
- KDTreePrioritySearcher(PrimitiveDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreePrioritySearcher
-
Constructor.
- KDTreePrioritySearcher(PrimitiveDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.SmallMemoryKDTree.KDTreePrioritySearcher
-
Constructor.
- KDTreePrioritySearcher(PartialDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.MemoryKDTree.KDTreePrioritySearcher
-
Constructor.
- KDTreePruningKMeans<V extends NumberVector> - Class in elki.clustering.kmeans
-
Pruning K-means with k-d-tree acceleration.
- KDTreePruningKMeans(NumberVectorDistance<? super V>, int, int, KMeansInitialization, KDTreePruningKMeans.Split, int) - Constructor for class elki.clustering.kmeans.KDTreePruningKMeans
-
Constructor.
- KDTreePruningKMeans.Instance - Class in elki.clustering.kmeans
-
Inner instance, storing state for a single data set.
- KDTreePruningKMeans.KDNode - Class in elki.clustering.kmeans
-
Node of the k-d-tree used internally.
- KDTreePruningKMeans.Par<V extends NumberVector> - Class in elki.clustering.kmeans
-
Parameterization class.
- KDTreePruningKMeans.Split - Enum in elki.clustering.kmeans
-
Splitting strategies for constructing the k-d-tree.
- KDTreeRangeSearcher(PartialDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.MemoryKDTree.KDTreeRangeSearcher
-
Constructor.
- KDTreeRangeSearcher(PartialDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeRangeSearcher
-
Constructor.
- KDTreeRangeSearcher(PartialDistance<? super O>) - Constructor for class elki.index.tree.spatial.kd.SmallMemoryKDTree.KDTreeRangeSearcher
-
Constructor.
- keep - Variable in class elki.clustering.uncertain.RepresentativeUncertainClustering
-
Keep all samples (not only the representative results)
- keep - Variable in class elki.clustering.uncertain.RepresentativeUncertainClustering.Par
-
Keep all samples (not only the representative results).
- keep - Variable in class elki.datasource.filter.typeconversions.UncertainifyFilter
-
Flag to keep the original data.
- keep - Variable in class elki.datasource.filter.typeconversions.UncertainifyFilter.Par
-
Flag to keep the original data.
- keep - Variable in class elki.projection.AbstractProjectionAlgorithm
-
Keep the original data relation.
- KEEP_ID - Static variable in class elki.datasource.filter.typeconversions.UncertainifyFilter.Par
-
Flag to keep the original data.
- KEEP_ID - Static variable in class elki.projection.AbstractProjectionAlgorithm
-
Flag to keep the original projection
- KEEP_SAMPLES_ID - Static variable in class elki.clustering.uncertain.RepresentativeUncertainClustering.Par
-
Flag to keep all samples.
- keepfirst - Variable in class elki.clustering.kmeans.initialization.FarthestPoints.Par
-
Flag for discarding the first object chosen.
- KEEPFIRST_ID - Static variable in class elki.clustering.kmeans.initialization.FarthestPoints.Par
-
Option ID to control the handling of the first object chosen.
- keepmed - Variable in class elki.clustering.kmedoids.CLARA
-
Keep the previous medoids in the sample (see page 145).
- keepmed - Variable in class elki.clustering.kmedoids.CLARA.Par
-
Keep the previous medoids in the sample.
- keepmed - Variable in class elki.clustering.kmedoids.FastCLARA
-
Keep the previous medoids in the sample (see page 145).
- keepmed - Variable in class elki.clustering.kmedoids.FastCLARA.Par
-
Keep the previous medoids in the sample.
- keepmed - Variable in class elki.clustering.kmedoids.FasterCLARA
-
Keep the previous medoids in the sample (see page 145).
- keepmed - Variable in class elki.clustering.kmedoids.FasterCLARA.Par
-
Keep the previous medoids in the sample.
- keepsteep - Variable in class elki.clustering.optics.OPTICSXi
-
Keep the steep areas, for visualization.
- keepsteep - Variable in class elki.clustering.optics.OPTICSXi.Par
- KEEPSTEEP_ID - Static variable in class elki.clustering.optics.OPTICSXi.Par
-
Parameter to keep the steep areas
- kernel - Variable in class elki.clustering.NaiveMeanShiftClustering
-
Density estimation kernel.
- kernel - Variable in class elki.clustering.onedimensional.KNNKernelDensityMinimaClustering
-
Kernel density function.
- kernel - Variable in class elki.clustering.onedimensional.KNNKernelDensityMinimaClustering.Par
-
Kernel density function.
- kernel - Variable in class elki.clustering.svm.SupportVectorClustering
-
Kernel function.
- kernel - Variable in class elki.outlier.lof.KDEOS
-
Kernel function to use for density estimation.
- kernel - Variable in class elki.outlier.lof.LDF
-
Kernel density function
- kernel - Variable in class elki.outlier.lof.SimpleKernelDensityLOF
-
Kernel density function
- kernel - Variable in class elki.outlier.subspace.OUTRES.KernelDensityEstimator
-
Actual kernel in use
- kernel - Variable in class elki.outlier.svm.LibSVMOneClassOutlierDetection
-
Kernel function in use.
- kernel - Variable in class elki.outlier.svm.OCSVM
-
Kernel function.
- kernel - Variable in class elki.outlier.svm.SVDD
-
Kernel function.
- kernel - Variable in class elki.similarity.kernel.KernelMatrix
-
The kernel matrix
- Kernel - Class in elki.svm.qmatrix
- Kernel(DataSet) - Constructor for class elki.svm.qmatrix.Kernel
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.BiweightKernelDensityFunction
-
Static instance.
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.CosineKernelDensityFunction
-
Static instance.
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction
-
Static instance.
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.GaussianKernelDensityFunction
-
Static instance.
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.TriangularKernelDensityFunction
-
Static instance.
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.TricubeKernelDensityFunction
-
Static instance.
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.TriweightKernelDensityFunction
-
Static instance.
- KERNEL - Static variable in class elki.math.statistics.kernelfunctions.UniformKernelDensityFunction
-
Static instance.
- KERNEL_FUNCTION_ID - Static variable in class elki.outlier.anglebased.ABOD.Par
-
Parameter for the kernel function.
- KERNEL_ID - Static variable in class elki.clustering.onedimensional.KNNKernelDensityMinimaClustering.Par
-
Kernel function.
- KernelDensityEstimator - Class in elki.math.statistics
-
Estimate density given an array of points.
- KernelDensityEstimator(double[], double, double, KernelDensityFunction, int, double) - Constructor for class elki.math.statistics.KernelDensityEstimator
-
Initialize and execute kernel density estimation.
- KernelDensityEstimator(double[], KernelDensityFunction, double) - Constructor for class elki.math.statistics.KernelDensityEstimator
-
Process an array of data
- KernelDensityEstimator(Relation<? extends NumberVector>, double) - Constructor for class elki.outlier.subspace.OUTRES.KernelDensityEstimator
-
Constructor.
- KernelDensityFunction - Interface in elki.math.statistics.kernelfunctions
-
Inner function of a kernel density estimator.
- kernelFunction - Variable in class elki.outlier.anglebased.ABOD
-
Store the configured Kernel version.
- kernelFunction - Variable in class elki.outlier.anglebased.ABOD.Par
-
Distance function.
- KernelMatrix - Class in elki.similarity.kernel
-
Kernel matrix representation.
- KernelMatrix(double[][]) - Constructor for class elki.similarity.kernel.KernelMatrix
-
Makes a new kernel matrix from matrix (with data copying).
- KernelMatrix(SimilarityQuery<? super O>, Relation<? extends O>, DBIDs) - Constructor for class elki.similarity.kernel.KernelMatrix
-
Provides a new kernel matrix.
- KernelMatrix(PrimitiveSimilarity<? super O>, Relation<? extends O>, DBIDs) - Constructor for class elki.similarity.kernel.KernelMatrix
-
Provides a new kernel matrix.
- key - Variable in class elki.clustering.kmeans.AbstractKMeans.Instance
-
Key for statistics logging.
- key - Variable in class elki.evaluation.clustering.internal.CIndex
-
Key for logging statistics.
- key - Variable in class elki.evaluation.clustering.internal.ClusterRadius
-
Key for logging statistics.
- key - Variable in class elki.evaluation.clustering.internal.ConcordantPairsGammaTau
-
Key for logging statistics.
- key - Variable in class elki.evaluation.clustering.internal.DaviesBouldinIndex
-
Key for logging statistics.
- key - Variable in class elki.evaluation.clustering.internal.PBMIndex
-
Key for logging statistics.
- key - Static variable in class elki.evaluation.clustering.internal.Silhouette
-
Key for logging statistics.
- key - Variable in class elki.evaluation.clustering.internal.SimplifiedSilhouette
-
Key for logging statistics.
- key - Variable in class elki.evaluation.clustering.internal.SquaredErrors
-
Key for logging statistics.
- key - Variable in class elki.evaluation.clustering.internal.VarianceRatioCriterion
-
Key for logging statistics.
- key - Variable in class elki.evaluation.outlier.OutlierRankingEvaluation
-
Key prefix for statistics logging.
- key - Variable in class elki.itemsetmining.FPGrowth.FPNode
-
Key, weight, and number of children.
- key - Variable in class elki.logging.statistics.AbstractStatistic
-
Key to report the statistic with.
- key(PlotItem, VisualizationTask) - Method in class elki.visualization.gui.overview.LayerMap
-
Helper function for building a key object
- KEY - Static variable in class elki.clustering.em.EM
-
Key for statistics logging.
- KEY - Static variable in class elki.clustering.kmeans.FuzzyCMeans
-
Key for statistics logging.
- KEY - Static variable in class elki.clustering.kmedoids.AlternatingKMedoids
-
Key for statistics logging.
- KEY - Static variable in class elki.clustering.kmedoids.EagerPAM
-
Key for loggers.
- KEY - Static variable in class elki.clustering.kmedoids.FasterPAM
-
Key for statistics logging.
- KEY - Static variable in class elki.clustering.kmedoids.FastPAM
-
Key for statistics logging.
- KEY - Static variable in class elki.clustering.kmedoids.FastPAM1
-
Key for statistics logging.
- KEY - Static variable in class elki.clustering.kmedoids.ReynoldsPAM
-
Key for statistics logging.
- KEY - Static variable in class elki.clustering.uncertain.UKMeans
-
Key for statistics logging.
- KEY - Static variable in interface elki.visualization.style.StyleLibrary
-
Key
- KEY_CAPTION - Static variable in class elki.visualization.visualizers.visunproj.DendrogramVisualization.Instance
-
CSS class for key captions.
- KEY_CAPTION - Static variable in class elki.visualization.visualizers.visunproj.KeyVisualization.Instance
-
CSS class for key captions.
- KEY_ENTRY - Static variable in class elki.visualization.visualizers.visunproj.KeyVisualization.Instance
-
CSS class for key entries.
- KEY_HIERLINE - Static variable in class elki.visualization.visualizers.visunproj.DendrogramVisualization.Instance
-
CSS class for hierarchy plot lines
- KEY_HIERLINE - Static variable in class elki.visualization.visualizers.visunproj.KeyVisualization.Instance
-
CSS class for hierarchy plot lines
- keymap - Variable in class elki.datasource.parser.SimpleTransactionParser
-
Map.
- keymap - Variable in class elki.datasource.parser.TermFrequencyParser
-
Map.
- keyPressed(KeyEvent) - Method in class elki.gui.util.ParameterTable.ClassListEditor
- keyPressed(KeyEvent) - Method in class elki.gui.util.ParameterTable.DropdownEditor
- keyPressed(KeyEvent) - Method in class elki.gui.util.ParameterTable.FileNameEditor
- keyPressed(KeyEvent) - Method in class elki.gui.util.ParameterTable.Handler
- keyPressed(KeyEvent) - Method in class elki.gui.util.TreePopup.Handler
- keyReleased(KeyEvent) - Method in class elki.gui.util.ParameterTable.ClassListEditor
- keyReleased(KeyEvent) - Method in class elki.gui.util.ParameterTable.DropdownEditor
- keyReleased(KeyEvent) - Method in class elki.gui.util.ParameterTable.FileNameEditor
- keyReleased(KeyEvent) - Method in class elki.gui.util.ParameterTable.Handler
- keyReleased(KeyEvent) - Method in class elki.gui.util.TreePopup.Handler
- keys - Variable in class elki.outlier.lof.LOCI.DoubleIntArrayList
-
Double keys
- keySet() - Method in class elki.visualization.gui.overview.RectangleArranger
-
The item keys contained in the map.
- keyTyped(KeyEvent) - Method in class elki.gui.util.ParameterTable.ClassListEditor
- keyTyped(KeyEvent) - Method in class elki.gui.util.ParameterTable.DropdownEditor
- keyTyped(KeyEvent) - Method in class elki.gui.util.ParameterTable.FileNameEditor
- keyTyped(KeyEvent) - Method in class elki.gui.util.ParameterTable.Handler
- keyTyped(KeyEvent) - Method in class elki.gui.util.TreePopup.Handler
- KeyVisualization - Class in elki.visualization.visualizers.visunproj
-
Visualizer, displaying the key for a clustering.
- KeyVisualization() - Constructor for class elki.visualization.visualizers.visunproj.KeyVisualization
- KeyVisualization.Instance - Class in elki.visualization.visualizers.visunproj
-
Instance
- Klosgen - Class in elki.itemsetmining.associationrules.interest
-
Klösgen interestingness measure.
- Klosgen() - Constructor for class elki.itemsetmining.associationrules.interest.Klosgen
-
Constructor.
- kmax - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.MkTreeSettings
-
Holds the maximum value of k to support.
- kmax - Variable in class elki.outlier.lof.KDEOS
-
Maximum number of neighbors to use.
- KMC2 - Class in elki.clustering.kmeans.initialization
-
K-MC² initialization
- KMC2(int, RandomFactory) - Constructor for class elki.clustering.kmeans.initialization.KMC2
-
Constructor.
- KMC2.Instance - Class in elki.clustering.kmeans.initialization
-
Abstract instance implementing the weight handling.
- KMC2.Par - Class in elki.clustering.kmeans.initialization
-
Parameterization class.
- kmeans - Variable in class elki.clustering.uncertain.CKMeans.Par
-
K-means instance to use.
- kmeans(double[][], ClusteringFeature[], int[], int[]) - Method in class elki.clustering.hierarchical.birch.BIRCHLloydKMeans
-
Perform k-means clustering.
- kmeans(ArrayList<? extends ClusterFeature>, int[], int[], CFTree<?>) - Method in class elki.clustering.kmeans.BetulaLloydKMeans
-
Perform k-means clustering.
- KMeans<V extends NumberVector,M extends Model> - Interface in elki.clustering.kmeans
-
Some constants and options shared among kmeans family algorithms.
- KMEANSBORDER - Static variable in class elki.visualization.visualizers.scatterplot.cluster.VoronoiVisualization
-
Generic tags to indicate the type of element.
- KMeansInitialization - Interface in elki.clustering.kmeans.initialization
-
Interface for initializing K-Means
- kmeansminusminus - Variable in class elki.outlier.clustering.KMeansMinusMinusOutlierDetection.Par
-
Clustering algorithm to run.
- KMeansMinusMinus<V extends NumberVector> - Class in elki.clustering.kmeans
-
k-means--: A Unified Approach to Clustering and Outlier Detection.
- KMeansMinusMinus(NumberVectorDistance<? super V>, int, int, KMeansInitialization, double, boolean) - Constructor for class elki.clustering.kmeans.KMeansMinusMinus
-
Constructor.
- KMeansMinusMinus.Instance - Class in elki.clustering.kmeans
-
Inner instance, storing state for a single data set.
- KMeansMinusMinus.Par<V extends NumberVector> - Class in elki.clustering.kmeans
-
Parameterization class.
- KMeansMinusMinusOutlierDetection - Class in elki.outlier.clustering
-
k-means--: A Unified Approach to Clustering and Outlier Detection.
- KMeansMinusMinusOutlierDetection(KMeansMinusMinus<?>) - Constructor for class elki.outlier.clustering.KMeansMinusMinusOutlierDetection
-
Constructor.
- KMeansMinusMinusOutlierDetection.Par - Class in elki.outlier.clustering
-
Parameterizer.
- KMeansModel - Class in elki.data.model
-
Trivial subclass of the
MeanModel
that indicates the clustering to be produced by k-means (so the Voronoi cell visualization is sensible). - KMeansModel(double[], double) - Constructor for class elki.data.model.KMeansModel
-
Constructor with mean.
- KMeansOutlierDetection<O extends NumberVector> - Class in elki.outlier.clustering
-
Outlier detection by using k-means clustering.
- KMeansOutlierDetection(KMeans<O, ?>, KMeansOutlierDetection.Rule) - Constructor for class elki.outlier.clustering.KMeansOutlierDetection
-
Constructor.
- KMeansOutlierDetection.Rule - Enum in elki.outlier.clustering
-
Outlier scoring rule
- KMeansPlusPlus<O> - Class in elki.clustering.kmeans.initialization
-
K-Means++ initialization for k-means.
- KMeansPlusPlus(RandomFactory) - Constructor for class elki.clustering.kmeans.initialization.KMeansPlusPlus
-
Constructor.
- KMeansPlusPlus.Instance<T> - Class in elki.clustering.kmeans.initialization
-
Abstract instance implementing the weight handling.
- KMeansPlusPlus.MedoidsInstance - Class in elki.clustering.kmeans.initialization
-
Instance for k-medoids.
- KMeansPlusPlus.NumberVectorInstance - Class in elki.clustering.kmeans.initialization
-
Instance for k-means, number vector based.
- KMeansPlusPlus.Par<V> - Class in elki.clustering.kmeans.initialization
-
Parameterization class.
- KMeansProcessor<V extends NumberVector> - Class in elki.clustering.kmeans.parallel
-
Parallel k-means implementation.
- KMeansProcessor(Relation<V>, NumberVectorDistance<? super V>, WritableIntegerDataStore, double[]) - Constructor for class elki.clustering.kmeans.parallel.KMeansProcessor
-
Constructor.
- KMeansProcessor.Instance<V extends NumberVector> - Class in elki.clustering.kmeans.parallel
-
Instance to process part of the data set, for a single iteration.
- KMeansQualityMeasure<O extends NumberVector> - Interface in elki.clustering.kmeans.quality
-
Interface for computing the quality of a K-Means clustering.
- KMediansLloyd<V extends NumberVector> - Class in elki.clustering.kmeans
-
k-medians clustering algorithm, but using Lloyd-style bulk iterations instead of the more complicated approach suggested by Kaufman and Rousseeuw (see
PAM
instead). - KMediansLloyd(NumberVectorDistance<? super V>, int, int, KMeansInitialization) - Constructor for class elki.clustering.kmeans.KMediansLloyd
-
Constructor.
- KMediansLloyd.Instance - Class in elki.clustering.kmeans
-
Inner instance, storing state for a single data set.
- KMediansLloyd.Par<V extends NumberVector> - Class in elki.clustering.kmeans
-
Parameterization class.
- KMedoidsClustering<O> - Interface in elki.clustering.kmedoids
-
Interface for clustering algorithms that produce medoids.
- KMedoidsInitialization<O> - Interface in elki.clustering.kmedoids.initialization
-
Interface for initializing K-Medoids.
- KMedoidsKMedoidsInitialization<O> - Class in elki.clustering.kmedoids.initialization
-
Initialize k-medoids with k-medoids, for methods such as PAMSIL.
This could also be used to initialize, e.g., PAM with CLARA. - KMedoidsKMedoidsInitialization(KMedoidsClustering<O>) - Constructor for class elki.clustering.kmedoids.initialization.KMedoidsKMedoidsInitialization
-
Constructor.
- KMedoidsKMedoidsInitialization.Par<O> - Class in elki.clustering.kmedoids.initialization
-
Parameterization class.
- kmin - Variable in class elki.outlier.lof.KDEOS
-
Minimum number of neighbors to use.
- KMLOutputHandler - Class in elki.result
-
Class to handle KML output.
- KMLOutputHandler(Path, OutlierScaling, boolean, boolean) - Constructor for class elki.result.KMLOutputHandler
-
Constructor.
- KMLOutputHandler.Par - Class in elki.result
-
Parameterization class
- KMPP_DISTANCE_ID - Static variable in class elki.clustering.kmeans.initialization.betula.CFKPlusPlusLeaves.Par
-
k Means distance.
- KMPP_DISTANCE_ID - Static variable in class elki.clustering.kmeans.initialization.betula.CFKPlusPlusTree.Par
-
k Means distance.
- kmulti - Variable in class elki.index.projected.ProjectedIndex.Factory
-
Multiplier for k.
- kmulti - Variable in class elki.index.projected.ProjectedIndex
-
Multiplier for k.
- knn - Variable in class elki.outlier.subspace.SOD
-
Neighborhood size.
- knn - Variable in class elki.outlier.subspace.SOD.Par
-
Neighborhood size.
- KNN_CACHE_MAGIC - Static variable in class elki.application.cache.CacheDoubleDistanceKNNLists
-
Magic number to identify files.
- KNN_ID - Static variable in class elki.outlier.subspace.SOD.Par
-
Parameter to specify the number of shared nearest neighbors to be considered for learning the subspace properties, must be an integer greater than 0.
- kNNABOD(Relation<V>, DBIDs, WritableDoubleDataStore, DoubleMinMax) - Method in class elki.outlier.anglebased.FastABOD
-
Simpler kNN based, can use more indexing.
- KNNBenchmark<O> - Class in elki.application.benchmark
-
Benchmarking experiment that computes the k nearest neighbors for each query point.
- KNNBenchmark(InputStep, Distance<? super O>, int, DatabaseConnection, double, RandomFactory) - Constructor for class elki.application.benchmark.KNNBenchmark
-
Constructor.
- kNNByDBID() - Method in class elki.database.query.QueryBuilder
-
Build a k-nearest-neighbors query; if possible also give a maximum k.
- kNNByDBID(int) - Method in class elki.database.query.QueryBuilder
-
Build a k-nearest-neighbors query.
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.distancematrix.PrecomputedDistanceMatrix
- kNNByDBID(DistanceQuery<O>, int, int) - Method in interface elki.index.KNNIndex
-
Get a KNN query object for the given distance query and k.
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.laesa.LAESA
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.NaiveProjectedKNNPreprocessor
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.SpacefillingKNNPreprocessor
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.projected.ProjectedIndex
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.covertree.CoverTree
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.covertree.SimplifiedCoverTree
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeIndex
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCoPTreeIndex
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTreeIndex
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeIndex
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mtree.MTreeIndex
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.vptree.GNAT
- kNNByDBID(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.vptree.VPTree
- kNNByDBID(Relation<? extends O>, DistanceQuery<O>, int, int) - Method in class elki.database.query.EmpiricalQueryOptimizer
- kNNByDBID(Relation<? extends O>, DistanceQuery<O>, int, int) - Method in interface elki.database.query.QueryOptimizer
-
Optimize a kNN query for this relation.
- kNNByObject() - Method in class elki.database.query.QueryBuilder
-
Build a k-nearest-neighbors query; if possible also give a maximum k.
- kNNByObject(int) - Method in class elki.database.query.QueryBuilder
-
Build a k-nearest-neighbors query.
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.distancematrix.PrecomputedDistanceMatrix
- kNNByObject(DistanceQuery<O>, int, int) - Method in interface elki.index.DistancePriorityIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.idistance.InMemoryIDistanceIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in interface elki.index.KNNIndex
-
Get a KNN query object for the given distance query and k.
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.laesa.LAESA
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor
-
Deprecated.not possible
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.NaiveProjectedKNNPreprocessor
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.NNDescent
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.SpacefillingKNNPreprocessor
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.preprocessed.knn.SpacefillingMaterializeKNNPreprocessor
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.projected.LatLngAsECEFIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.projected.LngLatAsECEFIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.projected.ProjectedIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.covertree.CoverTree
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.covertree.SimplifiedCoverTree
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCoPTreeIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTreeIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.mtreevariants.mtree.MTreeIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.vptree.GNAT
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.metrical.vptree.VPTree
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.spatial.kd.MemoryKDTree
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.spatial.kd.MinimalisticMemoryKDTree
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.spatial.kd.SmallMemoryKDTree
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.spatial.rstarvariants.deliclu.DeLiCluTreeIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.spatial.rstarvariants.flat.FlatRStarTreeIndex
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.spatial.rstarvariants.rdknn.RdKNNTree
- kNNByObject(DistanceQuery<O>, int, int) - Method in class elki.index.tree.spatial.rstarvariants.rstar.RStarTreeIndex
- kNNByObject(DistanceQuery<V>, int, int) - Method in class elki.index.invertedlist.InMemoryInvertedIndex
- kNNByObject(DistanceQuery<V>, int, int) - Method in class elki.index.lsh.InMemoryLSHIndex.Instance
- kNNByObject(DistanceQuery<V>, int, int) - Method in class elki.index.vafile.PartialVAFile
- kNNByObject(DistanceQuery<V>, int, int) - Method in class elki.index.vafile.VAFile
- kNNByObject(Relation<? extends O>, DistanceQuery<O>, int, int) - Method in class elki.database.query.EmpiricalQueryOptimizer
- kNNByObject(Relation<? extends O>, DistanceQuery<O>, int, int) - Method in interface elki.database.query.QueryOptimizer
-
Optimize a kNN query for this relation.
- KNNChangeEvent - Class in elki.index.preprocessed.knn
-
Encapsulates information describing changes of the k nearest neighbors (kNNs) of some objects due to insertion or removal of objects.
- KNNChangeEvent(Object, KNNChangeEvent.Type, DBIDs, DBIDs) - Constructor for class elki.index.preprocessed.knn.KNNChangeEvent
-
Used to create an event when kNNs of some objects have been changed.
- KNNChangeEvent.Type - Enum in elki.index.preprocessed.knn
-
Available event types.
- KNNClassifier<O> - Class in elki.classification
-
KNNClassifier classifies instances based on the class distribution among the k nearest neighbors in a database.
- KNNClassifier(Distance<? super O>, int) - Constructor for class elki.classification.KNNClassifier
-
Constructor.
- KNNDD<O> - Class in elki.outlier.distance
-
Nearest Neighbor Data Description.
- KNNDD(Distance<? super O>, int) - Constructor for class elki.outlier.distance.KNNDD
-
Constructor for a single kNN query.
- KNNDD.Par<O> - Class in elki.outlier.distance
-
Parameterization class.
- KNNDIST - Static variable in class elki.visualization.visualizers.scatterplot.selection.DistanceFunctionVisualization.Instance
- knnDistance - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxDirectoryEntry
-
The aggregated k-nearest neighbor distance of the underlying MkMax-Tree node.
- knnDistance - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxLeafEntry
-
The k-nearest neighbor distance of the underlying data object.
- knnDistance - Variable in class elki.index.tree.spatial.rstarvariants.rdknn.RdKNNDirectoryEntry
-
The aggregated knn distance of this entry.
- knnDistance - Variable in class elki.index.tree.spatial.rstarvariants.rdknn.RdKNNLeafEntry
-
The knn distance of the underlying data object.
- kNNDistance() - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTreeNode
-
Determines and returns the k-nearest neighbor distance of this node as the maximum of the k-nearest neighbor distances of all entries.
- kNNDistance() - Method in class elki.index.tree.spatial.rstarvariants.rdknn.RdKNNNode
-
Computes and returns the aggregated knn distance of this node
- kNNdistanceAdjustment(MkMaxEntry, Map<DBID, KNNList>) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTree
-
Adjusts the knn distance in the subtree of the specified root entry.
- kNNdistanceAdjustment(MkTabEntry, Map<DBID, KNNList>) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTree
- kNNdistanceAdjustment(E, Map<DBID, KNNList>) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnified
-
Performs a distance adjustment in the subtree of the specified root entry.
- knnDistanceApproximation() - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeNode
-
Determines and returns the polynomial approximation for the knn distances of this node as the maximum of the polynomial approximations of all entries.
- KNNDistanceOrderResult(double[], int) - Constructor for class elki.algorithm.KNNDistancesSampler.KNNDistanceOrderResult
-
Construct result
- knnDistances - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabDirectoryEntry
-
The aggregated knn distances of the underlying node.
- knnDistances - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabLeafEntry
-
The knn distances of the underlying data object.
- knnDistances(DBIDRef) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeIndex
-
Returns the knn distance of the object with the specified id.
- kNNDistances() - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeNode
-
Determines and returns the knn distance of this node as the maximum knn distance of all entries.
- KNNDistancesSampler<O> - Class in elki.algorithm
-
Provides an order of the kNN-distances for all objects within the database.
- KNNDistancesSampler(Distance<? super O>, int, double, RandomFactory) - Constructor for class elki.algorithm.KNNDistancesSampler
-
Constructor.
- KNNDistancesSampler.KNNDistanceOrderResult - Class in elki.algorithm
-
Curve result for a list containing the knn distances.
- KNNDistancesSampler.Par<O> - Class in elki.algorithm
-
Parameterization class.
- KNNEvaluator() - Constructor for class elki.algorithm.statistics.EvaluateRetrievalPerformance.KNNEvaluator
- KNNHeap - Interface in elki.database.ids
-
Interface for kNN heaps.
- knnIndex - Variable in class elki.database.query.EmpiricalQueryOptimizer
-
kNN preprocessor class.
- KNNIndex<O> - Interface in elki.index
-
Index with support for kNN queries.
- KNNJoin - Class in elki.algorithm
-
Joins in a given spatial database to each object its k-nearest neighbors.
- KNNJoin(SpatialPrimitiveDistance<?>, int) - Constructor for class elki.algorithm.KNNJoin
-
Constructor.
- KNNJoin.Par - Class in elki.algorithm
-
Parameterization class.
- KNNJoin.Task - Class in elki.algorithm
-
Task in the processing queue.
- KNNJoinMaterializeKNNPreprocessor<V extends SpatialComparable> - Class in elki.index.preprocessed.knn
-
Class to materialize the kNN using a spatial join on an R-tree.
- KNNJoinMaterializeKNNPreprocessor(Relation<V>, Distance<? super V>, int) - Constructor for class elki.index.preprocessed.knn.KNNJoinMaterializeKNNPreprocessor
-
Constructor.
- KNNJoinMaterializeKNNPreprocessor.Factory<O extends SpatialComparable> - Class in elki.index.preprocessed.knn
-
The parameterizable factory.
- KNNKernelDensityMinimaClustering - Class in elki.clustering.onedimensional
-
Cluster one-dimensional data by splitting the data set on local minima after performing kernel density estimation.
- KNNKernelDensityMinimaClustering(int, KernelDensityFunction, KNNKernelDensityMinimaClustering.Mode, int, int) - Constructor for class elki.clustering.onedimensional.KNNKernelDensityMinimaClustering
-
Constructor.
- KNNKernelDensityMinimaClustering.Mode - Enum in elki.clustering.onedimensional
-
Estimation mode.
- KNNKernelDensityMinimaClustering.Par - Class in elki.clustering.onedimensional
-
Parameterization class.
- KNNList - Interface in elki.database.ids
-
Interface for kNN results.
- KNNLIST - Static variable in class elki.data.type.TypeUtil
-
KNN lists.
- KNNListener - Interface in elki.index.preprocessed.knn
-
Listener interface invoked when the k nearest neighbors (kNNs) of some objects have been changed due to insertion or removals of objects.
- KNNMARKER - Static variable in class elki.visualization.visualizers.scatterplot.selection.DistanceFunctionVisualization.Instance
-
Generic tags to indicate the type of element.
- KNNOutlier<O> - Class in elki.outlier.distance
-
Outlier Detection based on the distance of an object to its k nearest neighbor.
- KNNOutlier(Distance<? super O>, int) - Constructor for class elki.outlier.distance.KNNOutlier
-
Constructor for a single kNN query.
- KNNOutlier.Par<O> - Class in elki.outlier.distance
-
Parameterization class.
- knnperf - Variable in class elki.algorithm.statistics.EvaluateRetrievalPerformance.RetrievalPerformanceResult
-
KNN performance
- KNNProcessor - Class in elki.parallel.processor
-
Processor to compute the kNN of each object.
- KNNProcessor(int, Supplier<KNNSearcher<DBIDRef>>) - Constructor for class elki.parallel.processor.KNNProcessor
-
Constructor.
- KNNProcessor.Instance - Class in elki.parallel.processor
-
Instance for precomputing the kNN.
- knnq - Variable in class elki.classification.KNNClassifier
-
kNN query class.
- knnq - Variable in class elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTree
-
Internal class for performing knn queries
- knnq - Variable in class elki.parallel.processor.KNNProcessor.Instance
-
kNN query
- knnq - Variable in class elki.parallel.processor.KNNProcessor
-
KNN query object
- knnQueries - Variable in class elki.index.tree.metrical.mtreevariants.AbstractMTree.Statistics
-
For counting the number of knn queries answered.
- knnQueries - Variable in class elki.index.tree.spatial.rstarvariants.AbstractRStarTree.Statistics
-
For counting the number of knn queries answered.
- knnQuery - Variable in class elki.database.query.rknn.LinearScanRKNNByDBID
-
KNN query we use.
- knnQuery - Variable in class elki.database.query.rknn.LinearScanRKNNByObject
-
KNN query we use.
- knnQuery - Variable in class elki.index.preprocessed.knn.MaterializeKNNPreprocessor
-
KNNSearcher instance to use.
- knnQuery - Variable in class elki.index.tree.spatial.rstarvariants.rdknn.RdKNNTree
-
Internal knn query object, for updating the rKNN.
- kNNReach - Variable in class elki.outlier.lof.FlexibleLOF.LOFResult
-
The kNN query w.r.t. the reachability distance.
- kNNRefer - Variable in class elki.outlier.lof.FlexibleLOF.LOFResult
-
The kNN query w.r.t. the reference neighborhood distance.
- knns - Variable in class elki.outlier.lof.parallel.LOFProcessor
-
KNN store
- knns - Variable in class elki.outlier.lof.parallel.LRDProcessor
-
KNN store
- knns - Variable in class elki.outlier.lof.parallel.SimplifiedLRDProcessor
-
KNN store
- kNNsChanged(KNNChangeEvent) - Method in interface elki.index.preprocessed.knn.KNNListener
-
Invoked after kNNs have been updated, inserted or removed in some way.
- kNNsChanged(KNNChangeEvent) - Method in class elki.outlier.lof.OnlineLOF.LOFKNNListener
- kNNsChanged(KNNChangeEvent, KNNChangeEvent) - Method in class elki.outlier.lof.OnlineLOF.LOFKNNListener
-
Invoked after the events of both preprocessors have been received, i.e.
- KNNSearcher<O> - Interface in elki.database.query.knn
-
The interface of an actual instance.
- kNNsInserted(DBIDs, DBIDs, DBIDs, FlexibleLOF.LOFResult<O>) - Method in class elki.outlier.lof.OnlineLOF.LOFKNNListener
-
Invoked after kNNs have been inserted and updated, updates the result.
- KNNSOS<O> - Class in elki.outlier.distance
-
kNN-based adaption of Stochastic Outlier Selection.
- KNNSOS(Distance<? super O>, int) - Constructor for class elki.outlier.distance.KNNSOS
-
Constructor.
- kNNsRemoved(DBIDs, DBIDs, DBIDs, FlexibleLOF.LOFResult<O>) - Method in class elki.outlier.lof.OnlineLOF.LOFKNNListener
-
Invoked after kNNs have been removed and updated, updates the result.
- KNNWeightOutlier<O> - Class in elki.outlier.distance
-
Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.
- KNNWeightOutlier(Distance<? super O>, int) - Constructor for class elki.outlier.distance.KNNWeightOutlier
-
Constructor with parameters.
- KNNWeightOutlier.Par<O> - Class in elki.outlier.distance
-
Parameterization class.
- KNNWeightProcessor - Class in elki.outlier.distance.parallel
-
Compute the kNN weight score, used by
ParallelKNNWeightOutlier
. - KNNWeightProcessor(int) - Constructor for class elki.outlier.distance.parallel.KNNWeightProcessor
-
Constructor.
- KNNWeightProcessor.Instance - Class in elki.outlier.distance.parallel
-
Instance for precomputing the kNN.
- KNOWN_REVERSED - Static variable in class elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
-
Pattern to match a set of known reversed scores.
- knownParameterizables - Variable in class elki.application.internal.CheckParameterizables
-
Known parameterizable classes/interfaces.
- KolmogorovSmirnovDistance - Class in elki.distance.histogram
-
Distance function based on the Kolmogorov-Smirnov goodness of fit test.
- KolmogorovSmirnovDistance() - Constructor for class elki.distance.histogram.KolmogorovSmirnovDistance
-
Deprecated.Use static instance!
- KolmogorovSmirnovDistance.Par - Class in elki.distance.histogram
-
Parameterization class, using the static instance.
- KolmogorovSmirnovTest - Class in elki.math.statistics.tests
-
Kolmogorov-Smirnov test.
- KolmogorovSmirnovTest() - Constructor for class elki.math.statistics.tests.KolmogorovSmirnovTest
-
Constructor.
- KolmogorovSmirnovTest.Par - Class in elki.math.statistics.tests
-
Parameterizer, to use the static instance.
- kplus - Variable in class elki.clustering.dbscan.LSDBC
-
Number of neighbors (+ query point)
- kplus - Variable in class elki.outlier.distance.KNNDD
-
The parameter k (plus query point!)
- kplus - Variable in class elki.outlier.distance.KNNOutlier
-
The parameter k (plus query point!)
- kplus - Variable in class elki.outlier.distance.KNNWeightOutlier
-
Holds the number of nearest neighbors to query (plus the query point!)
- kplus - Variable in class elki.outlier.distance.LocalIsolationCoefficient
-
Holds the number of nearest neighbors to query (plus the query point!)
- kplus - Variable in class elki.outlier.distance.ODIN
-
Number of neighbors for kNN graph.
- kplus - Variable in class elki.outlier.distance.parallel.ParallelKNNOutlier
-
Parameter k + 1
- kplus - Variable in class elki.outlier.distance.parallel.ParallelKNNWeightOutlier
-
Parameter k + 1
- kplus - Variable in class elki.outlier.DWOF
-
Holds the value of
DWOF.Par.K_ID
i.e. - kplus - Variable in class elki.outlier.intrinsic.LID
-
Number of neighbors to use + query point.
- kplus - Variable in class elki.outlier.lof.INFLO
-
Number of neighbors to use.
- kplus - Variable in class elki.outlier.lof.LDF
-
Parameter k + 1 for the query point.
- kplus - Variable in class elki.outlier.lof.LDOF
-
Number of neighbors to query + query point itself.
- kplus - Variable in class elki.outlier.lof.LOF
-
The number of neighbors to query (plus the query point!)
- kplus - Variable in class elki.outlier.lof.parallel.ParallelLOF
-
Parameter k + 1 for query point
- kplus - Variable in class elki.outlier.lof.parallel.ParallelSimplifiedLOF
-
Parameter k + 1 for the query point
- kplus - Variable in class elki.outlier.lof.SimpleKernelDensityLOF
-
Number of neighbors + the query point
- kplus - Variable in class elki.outlier.lof.SimplifiedLOF
-
The number of neighbors to query, plus the query point.
- kplus - Variable in class elki.outlier.lof.VarianceOfVolume
-
The number of neighbors to query (plus the query point!)
- kplus - Variable in class elki.outlier.SimpleCOP
-
Number of neighbors to be considered + the query point
- kplus - Variable in class tutorial.outlier.ODIN
-
Number of neighbors for kNN graph.
- KR_ID - Static variable in class elki.outlier.intrinsic.IDOS.Par
-
Parameter to specify the neighborhood size to use for the averaging.
- krange - Variable in class elki.application.greedyensemble.ComputeKNNOutlierScores
-
Range of k.
- krange - Variable in class elki.application.greedyensemble.ComputeKNNOutlierScores.Par
-
k step size
- KRANGE_ID - Static variable in class elki.application.greedyensemble.ComputeKNNOutlierScores.Par
-
Option ID for k parameter range
- krate - Variable in class elki.application.statistics.EstimateIntrinsicDimensionality
-
Number of neighbors to use.
- kreach - Variable in class elki.outlier.lof.FlexibleLOF
-
Number of neighbors used for reachability distance.
- kreach - Variable in class elki.outlier.lof.FlexibleLOF.Par
-
The set size to use for reachability distance.
- kreach - Variable in class elki.outlier.lof.LoOP
-
Reachability neighborhood size.
- KREACH_ID - Static variable in class elki.outlier.lof.FlexibleLOF.Par
-
Parameter to specify the number of nearest neighbors of an object to be considered for computing its reachability distance.
- KREF_ID - Static variable in class elki.outlier.lof.FlexibleLOF.Par
-
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOF score, must be an integer greater or equal to 1.
- krefer - Variable in class elki.outlier.lof.FlexibleLOF
-
Number of neighbors in comparison set.
- krefer - Variable in class elki.outlier.lof.FlexibleLOF.Par
-
The reference set size to use.
- KSQUARE_ID - Static variable in class elki.application.greedyensemble.ComputeKNNOutlierScores.Par
-
Option ID with an additional bound on k.
- ksquarestop - Variable in class elki.application.greedyensemble.ComputeKNNOutlierScores
-
Maximum k for O(k^2) methods.
- ksquarestop - Variable in class elki.application.greedyensemble.ComputeKNNOutlierScores.Par
-
Maximum k for O(k^2) methods.
- KuhnMunkres - Class in elki.utilities.datastructures
-
Kuhn-Munkres optimal matching (aka the Hungarian algorithm).
- KuhnMunkres() - Constructor for class elki.utilities.datastructures.KuhnMunkres
- KuhnMunkresStern - Class in elki.utilities.datastructures
-
A version of Kuhn-Munkres inspired by the implementation of Kevin L.
- KuhnMunkresStern() - Constructor for class elki.utilities.datastructures.KuhnMunkresStern
- KuhnMunkresWong - Class in elki.utilities.datastructures
-
Kuhn-Munkres optimal matching (aka the Hungarian algorithm), supposedly in a modern variant.
- KuhnMunkresWong() - Constructor for class elki.utilities.datastructures.KuhnMunkresWong
- Kulczynski1Similarity - Class in elki.similarity
-
Kulczynski similarity 1.
- Kulczynski1Similarity() - Constructor for class elki.similarity.Kulczynski1Similarity
-
Deprecated.Use
Kulczynski1Similarity.STATIC
instance instead. - Kulczynski1Similarity.Par - Class in elki.similarity
-
Parameterization class.
- Kulczynski2Similarity - Class in elki.similarity
-
Kulczynski similarity 2.
- Kulczynski2Similarity() - Constructor for class elki.similarity.Kulczynski2Similarity
-
Deprecated.Use
Kulczynski2Similarity.STATIC_CONTINUOUS
instance instead. - Kulczynski2Similarity.Par - Class in elki.similarity
-
Parameterization class.
- KullbackLeiblerDivergenceAsymmetricDistance - Class in elki.distance.probabilistic
-
Kullback-Leibler divergence, also known as relative entropy, information deviation, or just KL-distance (albeit asymmetric).
- KullbackLeiblerDivergenceAsymmetricDistance() - Constructor for class elki.distance.probabilistic.KullbackLeiblerDivergenceAsymmetricDistance
-
Deprecated.Use static instance!
- KullbackLeiblerDivergenceAsymmetricDistance.Par - Class in elki.distance.probabilistic
-
Parameterization class, using the static instance.
- KullbackLeiblerDivergenceReverseAsymmetricDistance - Class in elki.distance.probabilistic
-
Kullback-Leibler divergence, also known as relative entropy, information deviation or just KL-distance (albeit asymmetric).
- KullbackLeiblerDivergenceReverseAsymmetricDistance() - Constructor for class elki.distance.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistance
-
Deprecated.Use static instance!
- KullbackLeiblerDivergenceReverseAsymmetricDistance.Par - Class in elki.distance.probabilistic
-
Parameterization class, using the static instance.
All Classes All Packages