A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
E
- e - Variable in class elki.math.geodesy.AbstractEarthModel
-
Derived model parameters: e and e squared.
- e - Variable in class elki.math.linearalgebra.EigenvalueDecomposition
-
Arrays for internal storage of eigenvalues.
- e - Variable in class elki.math.statistics.MultipleLinearRegression
-
The (n x 1) - double[] holding the estimated residuals (e1, ..., en)^T.
- e - Variable in class elki.visualization.batikutil.AttributeModifier
-
Provides the attribute to be modified.
- EagerIt() - Constructor for class elki.result.Metadata.EagerIt
- EagerPAM<O> - Class in elki.clustering.kmedoids
-
Variation of PAM that eagerly performs all swaps that yield an improvement during an iteration.
- EagerPAM(Distance<? super O>, int, int, KMedoidsInitialization<O>) - Constructor for class elki.clustering.kmedoids.EagerPAM
-
Constructor.
- EagerPAM.Instance - Class in elki.clustering.kmedoids
-
Instance for a single dataset.
- EagerPAM.Par<O> - Class in elki.clustering.kmedoids
-
Parameterization class.
- EARLY_EXAGGERATION - Static variable in class elki.projection.TSNE
-
Early exaggeration factor.
- EARLY_EXAGGERATION_ITERATIONS - Static variable in class elki.projection.TSNE
-
Number of iterations to apply early exaggeration.
- EARTH_RADIUS - Static variable in class elki.math.geodesy.SphericalCosineEarthModel
-
Earth radius approximation in m.
- EARTH_RADIUS - Static variable in class elki.math.geodesy.SphericalHaversineEarthModel
-
Earth radius approximation in m.
- EARTH_RADIUS - Static variable in class elki.math.geodesy.SphericalVincentyEarthModel
-
Earth radius approximation in m.
- EarthModel - Interface in elki.math.geodesy
-
API for handling different earth models.
- ecefToLatDeg(double, double, double) - Method in class elki.math.geodesy.AbstractEarthModel
- ecefToLatDeg(double, double, double) - Method in interface elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude.
- ecefToLatLngDegHeight(double, double, double) - Method in class elki.math.geodesy.AbstractEarthModel
- ecefToLatLngDegHeight(double, double, double) - Method in interface elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude, longitude and height.
- ecefToLatLngRadHeight(double, double, double) - Method in class elki.math.geodesy.AbstractEarthModel
- ecefToLatLngRadHeight(double, double, double) - Method in interface elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude, longitude and height.
- ecefToLatRad(double, double, double) - Method in class elki.math.geodesy.AbstractEarthModel
- ecefToLatRad(double, double, double) - Method in interface elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude.
- ecefToLatRad(double, double, double) - Method in class elki.math.geodesy.SphericalCosineEarthModel
- ecefToLatRad(double, double, double) - Method in class elki.math.geodesy.SphericalHaversineEarthModel
- ecefToLatRad(double, double, double) - Method in class elki.math.geodesy.SphericalVincentyEarthModel
- ecefToLngDeg(double, double) - Method in class elki.math.geodesy.AbstractEarthModel
- ecefToLngDeg(double, double) - Method in interface elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding longitude.
- ecefToLngRad(double, double) - Method in class elki.math.geodesy.AbstractEarthModel
- ecefToLngRad(double, double) - Method in interface elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding longitude.
- Eclat - Class in elki.itemsetmining
-
Eclat is a depth-first discovery algorithm for mining frequent itemsets.
- Eclat(double, int, int) - Constructor for class elki.itemsetmining.Eclat
-
Constructor.
- Eclat.Par - Class in elki.itemsetmining
-
Parameterization class.
- Edge(int, int) - Constructor for class elki.visualization.parallel3d.layout.Layout.Edge
-
Constructor.
- edgelength(double[][], int[], int) - Static method in class elki.index.tree.metrical.mtreevariants.strategies.split.MSTSplit
-
Length of edge i.
- edges - Variable in class elki.visualization.parallel3d.layout.Layout
-
Edges
- edit - Variable in class elki.evaluation.clustering.ClusterContingencyTable
-
Edit-Distance measures
- EDIT_CLEAR - Static variable in class elki.gui.icons.StockIcon
- EDIT_FIND - Static variable in class elki.gui.icons.StockIcon
- EDIT_REDO - Static variable in class elki.gui.icons.StockIcon
- EDIT_UNDO - Static variable in class elki.gui.icons.StockIcon
- EditDistance - Class in elki.evaluation.clustering
-
Edit distance measures.
- EditDistance(ClusterContingencyTable) - Constructor for class elki.evaluation.clustering.EditDistance
- editDistanceFirst() - Method in class elki.evaluation.clustering.EditDistance
-
Get the editing distance to transform second clustering to first clustering (normalized, 0 = unequal)
- editDistanceSecond() - Method in class elki.evaluation.clustering.EditDistance
-
Get the editing distance to transform second clustering to first clustering (normalized, 0 = unequal)
- editFirst - Variable in class elki.evaluation.clustering.EditDistance
-
Edit operations for first clustering to second clustering.
- editOperationsBaseline - Variable in class elki.evaluation.clustering.EditDistance
-
Baseline for edit operations
- editOperationsBaseline() - Method in class elki.evaluation.clustering.EditDistance
-
Get the baseline editing Operations (= total objects)
- editOperationsFirst() - Method in class elki.evaluation.clustering.EditDistance
-
Get the editing operations required to transform first clustering to second clustering
- editOperationsSecond() - Method in class elki.evaluation.clustering.EditDistance
-
Get the editing operations required to transform second clustering to first clustering
- editSecond - Variable in class elki.evaluation.clustering.EditDistance
-
Edit operations for second clustering to first clustering.
- EDRDistance - Class in elki.distance.timeseries
-
Edit Distance on Real Sequence distance for numerical vectors.
- EDRDistance(double, double) - Constructor for class elki.distance.timeseries.EDRDistance
-
Constructor.
- EDRDistance.Par - Class in elki.distance.timeseries
-
Parameterization class.
- effectiveBandSize(int, int) - Method in class elki.distance.timeseries.AbstractEditDistance
-
Compute the effective band size.
- eigenFilter - Variable in class elki.math.statistics.intrinsicdimensionality.LPCAEstimator
-
Eigenvalue filter
- EigenPair - Class in elki.math.linearalgebra.pca
-
Helper class which encapsulates an eigenvector and its corresponding eigenvalue.
- EigenPair(double[], double) - Constructor for class elki.math.linearalgebra.pca.EigenPair
-
Creates a new EigenPair object.
- EIGENPAIR_FILTER_ABSOLUTE - Static variable in class elki.math.linearalgebra.pca.filter.LimitEigenPairFilter.Par
-
"absolute" Flag
- EIGENPAIR_FILTER_DELTA - Static variable in class elki.math.linearalgebra.pca.filter.LimitEigenPairFilter.Par
-
Parameter delta
- EIGENPAIR_FILTER_N - Static variable in class elki.math.linearalgebra.pca.filter.FirstNEigenPairFilter.Par
-
Parameter n
- EIGENPAIR_FILTER_PALPHA - Static variable in class elki.math.linearalgebra.pca.filter.ProgressiveEigenPairFilter.Par
-
Parameter progressive alpha.
- EIGENPAIR_FILTER_RALPHA - Static variable in class elki.math.linearalgebra.pca.filter.RelativeEigenPairFilter.Par
-
Parameter relative alpha.
- EIGENPAIR_FILTER_WALPHA - Static variable in class elki.math.linearalgebra.pca.filter.WeakEigenPairFilter.Par
-
OptionID for the weak alpha value of
WeakEigenPairFilter
,ProgressiveEigenPairFilter
, andSignificantEigenPairFilter
- eigenPairFilter - Variable in class elki.math.statistics.intrinsicdimensionality.LPCAEstimator.Par
-
EigenPairFilter to use.
- EigenPairFilter - Interface in elki.math.linearalgebra.pca.filter
-
The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors and their corresponding eigenvalues) which are a result of a Variance Analysis Algorithm, e.g., Principal Component Analysis.
- eigenPairs - Variable in class elki.math.linearalgebra.pca.PCAResult
-
The eigenpairs in decreasing order.
- eigenvalue - Variable in class elki.math.linearalgebra.pca.EigenPair
-
The corresponding eigenvalue.
- EigenvalueDecomposition - Class in elki.math.linearalgebra
-
Eigenvalues and eigenvectors of a real matrix.
- EigenvalueDecomposition(double[][]) - Constructor for class elki.math.linearalgebra.EigenvalueDecomposition
-
Check for symmetry, then construct the eigenvalue decomposition
- eigenvalues - Variable in class elki.math.linearalgebra.pca.PCAResult
-
The eigenvalues in decreasing order.
- eigenvector - Variable in class elki.math.linearalgebra.pca.EigenPair
-
The eigenvector as a matrix.
- eigenvectors - Variable in class elki.math.linearalgebra.pca.PCAResult
-
The eigenvectors in decreasing order to their corresponding eigenvalues.
- element - Variable in class elki.visualization.batikutil.DragableArea
-
Our element node.
- elementCoordinatesFromEvent(Document, Element, Event) - Static method in class elki.visualization.svg.SVGUtil
-
Convert the coordinates of an DOM Event from screen into element coordinates.
- elementCoordinatesFromEvent(Element, Event) - Method in class elki.visualization.svg.SVGPlot
-
Convert screen coordinates to element coordinates.
- elementLine - Variable in class elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The line element
- elementPoint - Variable in class elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The drag handle element
- elements - Variable in class elki.math.linearalgebra.Centroid
-
Vector elements.
- elements - Variable in class elki.math.linearalgebra.CovarianceMatrix
-
The covariance matrix.
- elems - Variable in class elki.utilities.datastructures.hierarchy.HashMapHierarchy
-
All elements, in insertion order (and will not fail badly if concurrent insertions happen).
- elemText - Variable in class elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The label element
- ElkanKMeans<V extends NumberVector> - Class in elki.clustering.kmeans
-
Elkan's fast k-means by exploiting the triangle inequality.
- ElkanKMeans(NumberVectorDistance<? super V>, int, int, KMeansInitialization, boolean) - Constructor for class elki.clustering.kmeans.ElkanKMeans
-
Constructor.
- ElkanKMeans.Instance - Class in elki.clustering.kmeans
-
Inner instance, storing state for a single data set.
- ElkanKMeans.Par<V extends NumberVector> - Class in elki.clustering.kmeans
-
Parameterization class.
- elki - package elki
-
ELKI framework "Environment for Developing KDD-Applications Supported by Index-Structures".
- elki.algorithm - package elki.algorithm
-
Miscellaneous algorithms.
- elki.algorithm.statistics - package elki.algorithm.statistics
-
Statistical analysis algorithms.
- elki.application - package elki.application
-
Base classes for standalone applications.
- elki.application.benchmark - package elki.application.benchmark
-
Benchmarking pseudo algorithms.
- elki.application.cache - package elki.application.cache
-
Utility applications for the persistence layer such as distance cache builders.
- elki.application.experiments - package elki.application.experiments
-
Packaged experiments to make them easy to reproduce.
- elki.application.greedyensemble - package elki.application.greedyensemble
-
Greedy ensembles for outlier detection.
- elki.application.internal - package elki.application.internal
-
Internal utilities for development.
- elki.application.statistics - package elki.application.statistics
-
Applications to compute some basic data set statistics.
- elki.classification - package elki.classification
-
Classification algorithms.
- elki.clustering - package elki.clustering
-
Clustering algorithms.
- elki.clustering.affinitypropagation - package elki.clustering.affinitypropagation
-
Affinity Propagation (AP) clustering.
- elki.clustering.biclustering - package elki.clustering.biclustering
-
Biclustering algorithms.
- elki.clustering.correlation - package elki.clustering.correlation
-
Correlation clustering algorithms.
- elki.clustering.correlation.cash - package elki.clustering.correlation.cash
-
Helper classes for the
CASH
algorithm. - elki.clustering.dbscan - package elki.clustering.dbscan
-
DBSCAN and its generalizations.
- elki.clustering.dbscan.parallel - package elki.clustering.dbscan.parallel
-
Parallel versions of Generalized DBSCAN.
- elki.clustering.dbscan.predicates - package elki.clustering.dbscan.predicates
-
Neighbor and core predicated for Generalized DBSCAN.
- elki.clustering.dbscan.util - package elki.clustering.dbscan.util
-
Utility classes for specialized DBSCAN implementations.
- elki.clustering.em - package elki.clustering.em
-
Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).
- elki.clustering.em.models - package elki.clustering.em.models
- elki.clustering.hierarchical - package elki.clustering.hierarchical
-
Hierarchical agglomerative clustering (HAC).
- elki.clustering.hierarchical.birch - package elki.clustering.hierarchical.birch
-
BIRCH clustering.
- elki.clustering.hierarchical.extraction - package elki.clustering.hierarchical.extraction
-
Extraction of partitional clusterings from hierarchical results.
- elki.clustering.hierarchical.linkage - package elki.clustering.hierarchical.linkage
-
Linkages for hierarchical clustering.
- elki.clustering.kcenter - package elki.clustering.kcenter
-
K-center clustering.
- elki.clustering.kmeans - package elki.clustering.kmeans
-
K-means clustering and variations.
- elki.clustering.kmeans.initialization - package elki.clustering.kmeans.initialization
-
Initialization strategies for k-means.
- elki.clustering.kmeans.initialization.betula - package elki.clustering.kmeans.initialization.betula
-
Initialization methods for BIRCH-based k-means and EM clustering.
- elki.clustering.kmeans.parallel - package elki.clustering.kmeans.parallel
-
Parallelized implementations of k-means.
- elki.clustering.kmeans.quality - package elki.clustering.kmeans.quality
-
Quality measures for k-Means results.
- elki.clustering.kmeans.spherical - package elki.clustering.kmeans.spherical
-
Spherical k-means clustering and variations.
- elki.clustering.kmedoids - package elki.clustering.kmedoids
-
K-medoids clustering (PAM).
- elki.clustering.kmedoids.initialization - package elki.clustering.kmedoids.initialization
- elki.clustering.meta - package elki.clustering.meta
-
Meta clustering algorithms, that get their result from other clusterings or external sources.
- elki.clustering.onedimensional - package elki.clustering.onedimensional
-
Clustering algorithms for one-dimensional data.
- elki.clustering.optics - package elki.clustering.optics
-
OPTICS family of clustering algorithms.
- elki.clustering.silhouette - package elki.clustering.silhouette
-
Silhouette clustering algorithms.
- elki.clustering.subspace - package elki.clustering.subspace
-
Axis-parallel subspace clustering algorithms.
- elki.clustering.subspace.clique - package elki.clustering.subspace.clique
-
Helper classes for the
CLIQUE
algorithm. - elki.clustering.svm - package elki.clustering.svm
- elki.clustering.trivial - package elki.clustering.trivial
-
Trivial clustering algorithms: all in one, no clusters, label clusterings.
- elki.clustering.uncertain - package elki.clustering.uncertain
-
Clustering algorithms for uncertain data.
- elki.data - package elki.data
-
Basic classes for different data types, database object types and label types.
- elki.data.model - package elki.data.model
-
Cluster models classes for various algorithms.
- elki.data.projection - package elki.data.projection
-
Data projections.
- elki.data.projection.random - package elki.data.projection.random
-
Random projection families.
- elki.data.spatial - package elki.data.spatial
-
Spatial data types - interfaces and utilities.
- elki.data.synthetic.bymodel - package elki.data.synthetic.bymodel
-
Generator using a distribution model specified in an XML configuration file.
- elki.data.type - package elki.data.type
-
Data type information, also used for type restrictions.
- elki.data.uncertain - package elki.data.uncertain
-
Uncertain data objects.
- elki.data.uncertain.uncertainifier - package elki.data.uncertain.uncertainifier
-
Classes to generate uncertain objects from existing certain data.
- elki.database - package elki.database
-
ELKI database layer - loading, storing, indexing and accessing data.
- elki.database.datastore - package elki.database.datastore
-
General data store layer API (along the lines of
Map<DBID, T>
- use everywhere!) - elki.database.datastore.memory - package elki.database.datastore.memory
-
Memory data store implementation for ELKI.
- elki.database.ids - package elki.database.ids
-
Database object identification and ID group handling API.
- elki.database.ids.integer - package elki.database.ids.integer
-
Integer-based DBID implementation -- do not use directly - always use
DBIDUtil
. - elki.database.query - package elki.database.query
-
Database queries - computing distances, neighbors, similarities - API and general documentation.
- elki.database.query.distance - package elki.database.query.distance
-
Prepared queries for distances.
- elki.database.query.knn - package elki.database.query.knn
-
Prepared queries for k nearest neighbor (kNN) queries.
- elki.database.query.range - package elki.database.query.range
-
Prepared queries for ε-range queries, that return all objects within the radius ε.
- elki.database.query.rknn - package elki.database.query.rknn
-
Prepared queries for reverse k nearest neighbor (rkNN) queries.
- elki.database.query.similarity - package elki.database.query.similarity
-
Prepared queries for similarity functions.
- elki.database.relation - package elki.database.relation
-
Relations, materialized and virtual (views).
- elki.datasource - package elki.datasource
-
Data normalization (and reconstitution) of data sets.
- elki.datasource.bundle - package elki.datasource.bundle
-
Object bundles - exchange container for multi-represented objects.
- elki.datasource.filter - package elki.datasource.filter
-
Data filtering, in particular for normalization and projection.
- elki.datasource.filter.cleaning - package elki.datasource.filter.cleaning
-
Filters for data cleaning.
- elki.datasource.filter.normalization - package elki.datasource.filter.normalization
-
Data normalization.
- elki.datasource.filter.normalization.columnwise - package elki.datasource.filter.normalization.columnwise
-
Normalizations operating on columns / variates; where each column is treated independently.
- elki.datasource.filter.normalization.instancewise - package elki.datasource.filter.normalization.instancewise
-
Instancewise normalization, where each instance is normalized independently.
- elki.datasource.filter.selection - package elki.datasource.filter.selection
-
Filters for selecting and sorting data to process.
- elki.datasource.filter.transform - package elki.datasource.filter.transform
-
Data space transformations.
- elki.datasource.filter.typeconversions - package elki.datasource.filter.typeconversions
-
Filters to perform data type conversions.
- elki.datasource.parser - package elki.datasource.parser
-
Parsers for different file formats and data types.
- elki.distance - package elki.distance
-
Distance functions for use within ELKI.
- elki.distance.adapter - package elki.distance.adapter
-
Distance functions deriving distances from, e.g., similarity measures.
- elki.distance.colorhistogram - package elki.distance.colorhistogram
-
Distance functions for color histograms.
- elki.distance.correlation - package elki.distance.correlation
-
Distance functions using correlations.
- elki.distance.external - package elki.distance.external
-
Distance functions using external data sources.
- elki.distance.geo - package elki.distance.geo
-
Geographic (earth) distance functions.
- elki.distance.histogram - package elki.distance.histogram
-
Distance functions for one-dimensional histograms.
- elki.distance.minkowski - package elki.distance.minkowski
-
Minkowski space Lp norms such as the popular Euclidean and Manhattan distances.
- elki.distance.probabilistic - package elki.distance.probabilistic
-
Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence, F-divergence, χ²-divergence, etc.
- elki.distance.set - package elki.distance.set
-
Distance functions for binary and set type data.
- elki.distance.strings - package elki.distance.strings
-
Distance functions for strings.
- elki.distance.subspace - package elki.distance.subspace
-
Distance functions based on subspaces.
- elki.distance.timeseries - package elki.distance.timeseries
-
Distance functions designed for time series.
- elki.evaluation - package elki.evaluation
-
Functionality for the evaluation of algorithms.
- elki.evaluation.classification - package elki.evaluation.classification
-
Evaluation of classification algorithms.
- elki.evaluation.classification.holdout - package elki.evaluation.classification.holdout
-
Holdout and cross-validation strategies for evaluating classifiers.
- elki.evaluation.clustering - package elki.evaluation.clustering
-
Evaluation of clustering results.
- elki.evaluation.clustering.extractor - package elki.evaluation.clustering.extractor
-
Classes to extract clusterings from hierarchical clustering.
- elki.evaluation.clustering.internal - package elki.evaluation.clustering.internal
-
Internal evaluation measures for clusterings.
- elki.evaluation.clustering.pairsegments - package elki.evaluation.clustering.pairsegments
-
Pair-segment analysis of multiple clusterings.
- elki.evaluation.index - package elki.evaluation.index
-
Simple index evaluation methods.
- elki.evaluation.outlier - package elki.evaluation.outlier
-
Evaluate an outlier score using a misclassification based cost model.
- elki.evaluation.scores - package elki.evaluation.scores
-
Evaluation of rankings and scorings.
- elki.evaluation.scores.adapter - package elki.evaluation.scores.adapter
-
Adapter classes for ranking and scoring measures.
- elki.evaluation.similaritymatrix - package elki.evaluation.similaritymatrix
-
Render a distance matrix to visualize a clustering-distance-combination.
- elki.gui - package elki.gui
-
Graphical User Interfaces for ELKI.
- elki.gui.configurator - package elki.gui.configurator
-
Configurator components.
- elki.gui.icons - package elki.gui.icons
-
Icons for ELKI GUI.
- elki.gui.minigui - package elki.gui.minigui
-
A very simple UI to build ELKI command lines.
- elki.gui.multistep - package elki.gui.multistep
-
Multi-step GUI for ELKI.
- elki.gui.multistep.panels - package elki.gui.multistep.panels
-
Panels for the multi-step GUI.
- elki.gui.util - package elki.gui.util
-
Utility classes for GUIs (e.g., a class to display a logging panel).
- elki.index - package elki.index
-
Index structure implementations.
- elki.index.distancematrix - package elki.index.distancematrix
-
Precomputed distance matrix.
- elki.index.idistance - package elki.index.idistance
-
iDistance is a distance based indexing technique, using a reference points embedding.
- elki.index.invertedlist - package elki.index.invertedlist
-
Indexes using inverted lists.
- elki.index.laesa - package elki.index.laesa
-
Linear Approximating and Eliminating Search Algorithm (LAESA).
- elki.index.lsh - package elki.index.lsh
-
Locality Sensitive Hashing.
- elki.index.lsh.hashfamilies - package elki.index.lsh.hashfamilies
-
Hash function families for LSH.
- elki.index.lsh.hashfunctions - package elki.index.lsh.hashfunctions
-
Hash functions for LSH.
- elki.index.preprocessed.fastoptics - package elki.index.preprocessed.fastoptics
-
Preprocessed index used by the FastOPTICS algorithm.
- elki.index.preprocessed.knn - package elki.index.preprocessed.knn
-
Indexes providing KNN and rKNN data.
- elki.index.preprocessed.snn - package elki.index.preprocessed.snn
-
Indexes providing nearest neighbor sets.
- elki.index.projected - package elki.index.projected
-
Projected indexes for data.
- elki.index.tree - package elki.index.tree
-
Tree-based index structures.
- elki.index.tree.betula - package elki.index.tree.betula
-
BETULA clustering by aggregating the data into cluster features.
- elki.index.tree.betula.distance - package elki.index.tree.betula.distance
-
Distance functions for BETULA and BIRCH.
- elki.index.tree.betula.features - package elki.index.tree.betula.features
-
Different variants of Betula and BIRCH cluster features.
- elki.index.tree.metrical - package elki.index.tree.metrical
-
Tree-based index structures for metrical vector spaces.
- elki.index.tree.metrical.covertree - package elki.index.tree.metrical.covertree
-
Cover-tree variations.
- elki.index.tree.metrical.mtreevariants - package elki.index.tree.metrical.mtreevariants
-
M-tree and variants.
- elki.index.tree.metrical.mtreevariants.mktrees - package elki.index.tree.metrical.mtreevariants.mktrees
-
Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries.
- elki.index.tree.metrical.mtreevariants.mktrees.mkapp - package elki.index.tree.metrical.mtreevariants.mktrees.mkapp
- elki.index.tree.metrical.mtreevariants.mktrees.mkcop - package elki.index.tree.metrical.mtreevariants.mktrees.mkcop
- elki.index.tree.metrical.mtreevariants.mktrees.mkmax - package elki.index.tree.metrical.mtreevariants.mktrees.mkmax
- elki.index.tree.metrical.mtreevariants.mktrees.mktab - package elki.index.tree.metrical.mtreevariants.mktrees.mktab
- elki.index.tree.metrical.mtreevariants.mtree - package elki.index.tree.metrical.mtreevariants.mtree
- elki.index.tree.metrical.mtreevariants.query - package elki.index.tree.metrical.mtreevariants.query
-
Classes for performing queries (knn, range, ...) on metrical trees.
- elki.index.tree.metrical.mtreevariants.strategies.insert - package elki.index.tree.metrical.mtreevariants.strategies.insert
-
Insertion (choose path) strategies of nodes in an M-tree (and variants).
- elki.index.tree.metrical.mtreevariants.strategies.split - package elki.index.tree.metrical.mtreevariants.strategies.split
-
Splitting strategies of nodes in an M-tree (and variants).
- elki.index.tree.metrical.mtreevariants.strategies.split.distribution - package elki.index.tree.metrical.mtreevariants.strategies.split.distribution
-
Entry distribution strategies of nodes in an M-tree (and variants).
- elki.index.tree.metrical.vptree - package elki.index.tree.metrical.vptree
- elki.index.tree.spatial - package elki.index.tree.spatial
-
Tree-based index structures for spatial indexing.
- elki.index.tree.spatial.kd - package elki.index.tree.spatial.kd
-
K-d-tree and variants.
- elki.index.tree.spatial.kd.split - package elki.index.tree.spatial.kd.split
- elki.index.tree.spatial.rstarvariants - package elki.index.tree.spatial.rstarvariants
-
R*-tree and variants.
- elki.index.tree.spatial.rstarvariants.deliclu - package elki.index.tree.spatial.rstarvariants.deliclu
- elki.index.tree.spatial.rstarvariants.flat - package elki.index.tree.spatial.rstarvariants.flat
- elki.index.tree.spatial.rstarvariants.query - package elki.index.tree.spatial.rstarvariants.query
-
Queries on the R-Tree family of indexes: kNN and range queries.
- elki.index.tree.spatial.rstarvariants.rdknn - package elki.index.tree.spatial.rstarvariants.rdknn
- elki.index.tree.spatial.rstarvariants.rstar - package elki.index.tree.spatial.rstarvariants.rstar
- elki.index.tree.spatial.rstarvariants.strategies.bulk - package elki.index.tree.spatial.rstarvariants.strategies.bulk
-
Packages for bulk-loading R*-trees.
- elki.index.tree.spatial.rstarvariants.strategies.insert - package elki.index.tree.spatial.rstarvariants.strategies.insert
-
Insertion strategies for R-trees.
- elki.index.tree.spatial.rstarvariants.strategies.overflow - package elki.index.tree.spatial.rstarvariants.strategies.overflow
-
Overflow treatment strategies for R-trees.
- elki.index.tree.spatial.rstarvariants.strategies.reinsert - package elki.index.tree.spatial.rstarvariants.strategies.reinsert
-
Reinsertion strategies for R-trees.
- elki.index.tree.spatial.rstarvariants.strategies.split - package elki.index.tree.spatial.rstarvariants.strategies.split
-
Splitting strategies for R-trees.
- elki.index.tree.spatial.rstarvariants.util - package elki.index.tree.spatial.rstarvariants.util
-
Utilities for R*-tree and variants.
- elki.index.vafile - package elki.index.vafile
-
Vector Approximation File.
- elki.itemsetmining - package elki.itemsetmining
-
Algorithms for frequent itemset mining such as APRIORI.
- elki.itemsetmining.associationrules - package elki.itemsetmining.associationrules
-
Association rule mining.
- elki.itemsetmining.associationrules.interest - package elki.itemsetmining.associationrules.interest
-
Association rule interestingness measures.
- elki.logging - package elki.logging
-
Logging facility for controlling logging behavior of the complete framework.
- elki.logging.progress - package elki.logging.progress
-
Progress status objects (for UI).
- elki.logging.statistics - package elki.logging.statistics
-
Classes for logging various statistics.
- elki.math - package elki.math
-
Mathematical operations and utilities used throughout the framework.
- elki.math.geodesy - package elki.math.geodesy
-
Functions for computing on the sphere / earth.
- elki.math.geometry - package elki.math.geometry
-
Algorithms from computational geometry.
- elki.math.linearalgebra - package elki.math.linearalgebra
-
The linear algebra package provides classes and computational methods for operations on matrices and vectors.
- elki.math.linearalgebra.fitting - package elki.math.linearalgebra.fitting
-
Function to numerically fit a function (such as a
Gaussian distribution
) to given data. - elki.math.linearalgebra.pca - package elki.math.linearalgebra.pca
-
Principal Component Analysis (PCA) and eigenvector processing.
- elki.math.linearalgebra.pca.filter - package elki.math.linearalgebra.pca.filter
-
Filter eigenvectors based on their eigenvalues.
- elki.math.linearalgebra.pca.weightfunctions - package elki.math.linearalgebra.pca.weightfunctions
-
Weight functions used in weighted PCA via
WeightedCovarianceMatrixBuilder
. - elki.math.scales - package elki.math.scales
-
Scales handling for plotting.
- elki.math.spacefillingcurves - package elki.math.spacefillingcurves
-
Space filling curves.
- elki.math.statistics - package elki.math.statistics
-
Statistical tests and methods.
- elki.math.statistics.dependence - package elki.math.statistics.dependence
-
Statistical measures of dependence, such as correlation.
- elki.math.statistics.dependence.mcde - package elki.math.statistics.dependence.mcde
-
Tests tailored to be used with
MCDEDependence
. - elki.math.statistics.distribution - package elki.math.statistics.distribution
-
Standard distributions, with random generation functionalities.
- elki.math.statistics.distribution.estimator - package elki.math.statistics.distribution.estimator
-
Estimators for statistical distributions.
- elki.math.statistics.distribution.estimator.meta - package elki.math.statistics.distribution.estimator.meta
-
Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g., on a trimmed data set, or as an ensemble.
- elki.math.statistics.intrinsicdimensionality - package elki.math.statistics.intrinsicdimensionality
-
Methods for estimating the intrinsic dimensionality.
- elki.math.statistics.kernelfunctions - package elki.math.statistics.kernelfunctions
-
Kernel functions from statistics.
- elki.math.statistics.tests - package elki.math.statistics.tests
-
Statistical tests.
- elki.outlier - package elki.outlier
-
Outlier detection algorithms.
- elki.outlier.anglebased - package elki.outlier.anglebased
-
Angle-based outlier detection algorithms.
- elki.outlier.clustering - package elki.outlier.clustering
-
Clustering based outlier detection.
- elki.outlier.density - package elki.outlier.density
-
Density-based outlier detection algorithms.
- elki.outlier.distance - package elki.outlier.distance
-
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
- elki.outlier.distance.parallel - package elki.outlier.distance.parallel
-
Parallel implementations of distance-based outlier detectors.
- elki.outlier.intrinsic - package elki.outlier.intrinsic
-
Outlier detection algorithms based on intrinsic dimensionality.
- elki.outlier.lof - package elki.outlier.lof
-
LOF family of outlier detection algorithms.
- elki.outlier.lof.parallel - package elki.outlier.lof.parallel
-
Parallelized variants of LOF.
- elki.outlier.meta - package elki.outlier.meta
-
Meta outlier detection algorithms: external scores, score rescaling.
- elki.outlier.spatial - package elki.outlier.spatial
-
Spatial outlier detection algorithms.
- elki.outlier.spatial.neighborhood - package elki.outlier.spatial.neighborhood
-
Spatial outlier neighborhood classes.
- elki.outlier.spatial.neighborhood.weighted - package elki.outlier.spatial.neighborhood.weighted
-
Weighted neighborhood definitions.
- elki.outlier.subspace - package elki.outlier.subspace
-
Subspace outlier detection methods.
- elki.outlier.svm - package elki.outlier.svm
-
Support-Vector-Machines for outlier detection.
- elki.outlier.trivial - package elki.outlier.trivial
-
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
- elki.parallel - package elki.parallel
-
Parallel processing core for ELKI.
- elki.parallel.processor - package elki.parallel.processor
-
Processor API of ELKI, and some essential shared processors.
- elki.parallel.variables - package elki.parallel.variables
-
Variables are instantiated for each thread, and allow passing values from one processor to another within the same thread.
- elki.persistent - package elki.persistent
-
Persistent data management.
- elki.projection - package elki.projection
-
Data projections (see also preprocessing filters for basic projections).
- elki.result - package elki.result
-
Result types, representation and handling.
- elki.result.outlier - package elki.result.outlier
-
Outlier result classes.
- elki.result.textwriter - package elki.result.textwriter
-
Text serialization (CSV, Gnuplot, Console, ...).
- elki.result.textwriter.naming - package elki.result.textwriter.naming
-
Naming schemes for clusters (for output when an algorithm does not generate cluster names).
- elki.result.textwriter.writers - package elki.result.textwriter.writers
-
Serialization handlers for individual data types.
- elki.similarity - package elki.similarity
-
Similarity functions.
- elki.similarity.cluster - package elki.similarity.cluster
-
Similarity measures for comparing clusters.
- elki.similarity.kernel - package elki.similarity.kernel
-
Kernel functions.
- elki.svm - package elki.svm
- elki.svm.data - package elki.svm.data
- elki.svm.model - package elki.svm.model
- elki.svm.qmatrix - package elki.svm.qmatrix
- elki.svm.solver - package elki.svm.solver
- elki.timeseries - package elki.timeseries
-
Algorithms for change point detection in time series.
- elki.utilities - package elki.utilities
-
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
- elki.utilities.datastructures - package elki.utilities.datastructures
-
Basic memory structures such as heaps and object hierarchies.
- elki.utilities.datastructures.arraylike - package elki.utilities.datastructures.arraylike
-
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
- elki.utilities.datastructures.arrays - package elki.utilities.datastructures.arrays
-
Utilities for arrays: advanced sorting for primitive arrays.
- elki.utilities.datastructures.heap - package elki.utilities.datastructures.heap
-
Heap structures and variations such as bounded priority heaps.
- elki.utilities.datastructures.hierarchy - package elki.utilities.datastructures.hierarchy
-
Delegate implementation of a hierarchy.
- elki.utilities.datastructures.histogram - package elki.utilities.datastructures.histogram
-
Classes for computing histograms.
- elki.utilities.datastructures.iterator - package elki.utilities.datastructures.iterator
-
ELKI Iterator API.
- elki.utilities.datastructures.range - package elki.utilities.datastructures.range
-
Ranges of values.
- elki.utilities.datastructures.unionfind - package elki.utilities.datastructures.unionfind
-
Union-find data structures.
- elki.utilities.documentation - package elki.utilities.documentation
-
Documentation utilities: Annotations for Title, Description, Reference.
- elki.utilities.ensemble - package elki.utilities.ensemble
-
Utility classes for simple ensembles.
- elki.utilities.exceptions - package elki.utilities.exceptions
-
Exception classes and common exception messages.
- elki.utilities.io - package elki.utilities.io
-
Utility classes for input/output.
- elki.utilities.optionhandling - package elki.utilities.optionhandling
-
Parameter handling and option descriptions.
- elki.utilities.optionhandling.constraints - package elki.utilities.optionhandling.constraints
-
Constraints allow to restrict possible values for parameters.
- elki.utilities.optionhandling.parameterization - package elki.utilities.optionhandling.parameterization
-
Configuration managers.
- elki.utilities.optionhandling.parameters - package elki.utilities.optionhandling.parameters
-
Classes for various typed parameters.
- elki.utilities.pairs - package elki.utilities.pairs
-
Pairs utility classes.
- elki.utilities.random - package elki.utilities.random
-
Random number generation.
- elki.utilities.referencepoints - package elki.utilities.referencepoints
-
Package containing strategies to obtain reference points.
- elki.utilities.scaling - package elki.utilities.scaling
-
Scaling functions: linear, logarithmic, gamma, clipping, ...
- elki.utilities.scaling.outlier - package elki.utilities.scaling.outlier
-
Scaling of outlier scores, that require a statistical analysis of the occurring values.
- elki.utilities.xml - package elki.utilities.xml
-
XML and XHTML utilities.
- elki.visualization - package elki.visualization
-
Visualization package of ELKI.
- elki.visualization.batikutil - package elki.visualization.batikutil
-
Commonly used functionality useful for Apache Batik.
- elki.visualization.colors - package elki.visualization.colors
-
Color scheme handling for ELKI visualization.
- elki.visualization.css - package elki.visualization.css
-
Managing CSS styles / classes.
- elki.visualization.gui - package elki.visualization.gui
-
Package to provide a visualization GUI.
- elki.visualization.gui.detail - package elki.visualization.gui.detail
-
Classes for managing a detail view.
- elki.visualization.gui.overview - package elki.visualization.gui.overview
-
Classes for managing the overview plot.
- elki.visualization.opticsplot - package elki.visualization.opticsplot
-
Code for drawing OPTICS plots.
- elki.visualization.parallel3d - package elki.visualization.parallel3d
-
3DPC: 3D parallel coordinate plot visualization for ELKI.
- elki.visualization.parallel3d.layout - package elki.visualization.parallel3d.layout
-
Layouting algorithms for 3D parallel coordinate plots.
- elki.visualization.parallel3d.util - package elki.visualization.parallel3d.util
-
Utility classes (primarily rendering utilities).
- elki.visualization.projections - package elki.visualization.projections
-
Visualization projections.
- elki.visualization.projector - package elki.visualization.projector
-
Projectors are responsible for finding appropriate projections for data relations.
- elki.visualization.savedialog - package elki.visualization.savedialog
-
Save dialog for SVG plots.
- elki.visualization.silhouette - package elki.visualization.silhouette
-
Code for drawing silhouette plots.
- elki.visualization.style - package elki.visualization.style
-
Style management for ELKI visualizations.
- elki.visualization.style.lines - package elki.visualization.style.lines
-
Generate line styles for plotting in CSS.
- elki.visualization.style.marker - package elki.visualization.style.marker
-
Draw plot markers.
- elki.visualization.svg - package elki.visualization.svg
-
Base SVG functionality (generation, markers, thumbnails, export, ...).
- elki.visualization.visualizers - package elki.visualization.visualizers
-
Visualizers for various results.
- elki.visualization.visualizers.actions - package elki.visualization.visualizers.actions
-
Action-only "visualizers" that only produce menu entries.
- elki.visualization.visualizers.histogram - package elki.visualization.visualizers.histogram
-
Visualizers based on 1D projected histograms.
- elki.visualization.visualizers.optics - package elki.visualization.visualizers.optics
-
Visualizers that do work on OPTICS plots.
- elki.visualization.visualizers.pairsegments - package elki.visualization.visualizers.pairsegments
-
Visualizers for inspecting cluster differences using pair counting segments.
- elki.visualization.visualizers.parallel - package elki.visualization.visualizers.parallel
-
Visualizers based on parallel coordinates.
- elki.visualization.visualizers.parallel.cluster - package elki.visualization.visualizers.parallel.cluster
-
Visualizers for clustering results based on parallel coordinates.
- elki.visualization.visualizers.parallel.index - package elki.visualization.visualizers.parallel.index
-
Visualizers for index structure based on parallel coordinates.
- elki.visualization.visualizers.parallel.selection - package elki.visualization.visualizers.parallel.selection
-
Visualizers for object selection based on parallel projections.
- elki.visualization.visualizers.scatterplot - package elki.visualization.visualizers.scatterplot
-
Visualizers based on scatterplots.
- elki.visualization.visualizers.scatterplot.cluster - package elki.visualization.visualizers.scatterplot.cluster
-
Visualizers for clustering results based on 2D projections.
- elki.visualization.visualizers.scatterplot.density - package elki.visualization.visualizers.scatterplot.density
-
Visualizers for data set density in a scatterplot projection.
- elki.visualization.visualizers.scatterplot.index - package elki.visualization.visualizers.scatterplot.index
-
Visualizers for index structures based on 2D projections.
- elki.visualization.visualizers.scatterplot.outlier - package elki.visualization.visualizers.scatterplot.outlier
-
Visualizers for outlier scores based on 2D projections.
- elki.visualization.visualizers.scatterplot.selection - package elki.visualization.visualizers.scatterplot.selection
-
Visualizers for object selection based on 2D projections.
- elki.visualization.visualizers.scatterplot.uncertain - package elki.visualization.visualizers.scatterplot.uncertain
-
Visualizers for uncertain data.
- elki.visualization.visualizers.silhouette - package elki.visualization.visualizers.silhouette
-
Visualizers that do work on Silhouette plots.
- elki.visualization.visualizers.thumbs - package elki.visualization.visualizers.thumbs
-
Thumbnail "Visualizers" (that take care of refreshing thumbnails).
- elki.visualization.visualizers.visunproj - package elki.visualization.visualizers.visunproj
-
Visualizers that do not use a particular projection.
- elki.workflow - package elki.workflow
-
Work flow packages, e.g., following the usual KDD model.
- ELKIBuilder<T> - Class in elki.utilities
-
Builder utility class.
- ELKIBuilder(Class<? super T>) - Constructor for class elki.utilities.ELKIBuilder
-
Constructor.
- ELKILauncher - Class in elki.application
-
Class to launch ELKI.
- ELKILauncher() - Constructor for class elki.application.ELKILauncher
-
Private constructor.
- ELKILogRecord - Class in elki.logging
-
Base
LogRecord
class used in ELKI. - ELKILogRecord(Level, CharSequence) - Constructor for class elki.logging.ELKILogRecord
-
Constructor.
- ELKIServiceLoader - Class in elki.utilities
-
Class that emulates the behavior of an java ServiceLoader, except that the classes are not automatically instantiated.
- ELKIServiceLoader() - Constructor for class elki.utilities.ELKIServiceLoader
-
Constructor - do not use.
- ELKIServiceRegistry - Class in elki.utilities
-
Registry of available implementations in ELKI.
- ELKIServiceRegistry() - Constructor for class elki.utilities.ELKIServiceRegistry
-
Do not use constructor.
- ELKIServiceRegistry.Entry - Class in elki.utilities
-
Entry in the service registry.
- ELKIServiceScanner - Class in elki.utilities
-
A collection of inspection-related utility functions.
- ELKIServiceScanner() - Constructor for class elki.utilities.ELKIServiceScanner
-
Static methods only.
- ELKIServiceScanner.DirClassIterator - Class in elki.utilities
-
Class to iterate over a directory tree.
- ellipsoidVincentyFormulaDeg(double, double, double, double, double) - Static method in class elki.math.geodesy.SphereUtil
-
Compute the approximate great-circle distance of two points.
- ellipsoidVincentyFormulaRad(double, double, double, double, double) - Static method in class elki.math.geodesy.SphereUtil
-
Compute the approximate great-circle distance of two points.
- ellipticalArc(double[], double, double, double, double[]) - Method in class elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- ellipticalArc(double, double, double, double, double, double[]) - Method in class elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- ellipticalArc(double, double, double, double, double, double, double) - Method in class elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- EM<O,M extends MeanModel> - Class in elki.clustering.em
-
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian Mixture Modeling (GMM), with optional MAP regularization.
- EM(int, double, EMClusterModelFactory<? super O, M>) - Constructor for class elki.clustering.em.EM
-
Constructor.
- EM(int, double, EMClusterModelFactory<? super O, M>, int, boolean) - Constructor for class elki.clustering.em.EM
-
Constructor.
- EM(int, double, EMClusterModelFactory<? super O, M>, int, double, boolean) - Constructor for class elki.clustering.em.EM
-
Constructor.
- EM(int, double, EMClusterModelFactory<? super O, M>, int, int, double, boolean) - Constructor for class elki.clustering.em.EM
-
Constructor.
- EM_DELTA_ID - Static variable in class elki.clustering.subspace.P3C.Par
-
Threshold when to stop EM iterations.
- EM.Par<O,M extends MeanModel> - Class in elki.clustering.em
-
Parameterization class.
- embedOrThumbnail(int, PlotItem, VisualizationTask, Element) - Method in class elki.visualization.gui.overview.OverviewPlot
-
Produce thumbnail for a visualizer.
- EMBLEM_IMPORTANT - Static variable in class elki.gui.icons.StockIcon
- EMBORDER - Static variable in class elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
-
Generic tags to indicate the type of element.
- EMClusterModel<O,M extends Model> - Interface in elki.clustering.em.models
-
Models usable in EM clustering.
- EMClusterModelFactory<O,M extends Model> - Interface in elki.clustering.em.models
-
Factory for initializing the EM models.
- EMClusterVisualization - Class in elki.visualization.visualizers.scatterplot.cluster
-
Visualizer for generating SVG-Elements containing ellipses for first, second and third standard deviation.
- EMClusterVisualization() - Constructor for class elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization
-
Constructor
- EMClusterVisualization.Instance - Class in elki.visualization.visualizers.scatterplot.cluster
-
Instance.
- emDelta - Variable in class elki.clustering.subspace.P3C
-
Threshold when to stop EM iterations.
- emDelta - Variable in class elki.clustering.subspace.P3C.Par
-
Threshold when to stop EM iterations.
- EMGOlivierNorbergEstimator - Class in elki.math.statistics.distribution.estimator
-
Naive distribution estimation using mean and sample variance.
- EMGOlivierNorbergEstimator() - Constructor for class elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
-
Private constructor, use static instance!
- EMGOlivierNorbergEstimator.Par - Class in elki.math.statistics.distribution.estimator
-
Parameterization class.
- EMModel - Class in elki.data.model
-
Cluster model of an EM cluster, providing a mean and a full covariance Matrix.
- EMModel(double[], double[][]) - Constructor for class elki.data.model.EMModel
-
Constructor.
- EMOutlier<V extends NumberVector> - Class in elki.outlier.clustering
-
Outlier detection algorithm using EM Clustering.
- EMOutlier(int, double, EMClusterModelFactory<? super V, ?>, int, int, double) - Constructor for class elki.outlier.clustering.EMOutlier
-
Constructor.
- EMOutlier.Par<V extends NumberVector> - Class in elki.outlier.clustering
-
Parameterization class.
- EmpiricalQueryOptimizer - Class in elki.database.query
-
Class to automatically add indexes to a database.
- EmpiricalQueryOptimizer() - Constructor for class elki.database.query.EmpiricalQueryOptimizer
-
Constructor.
- empty() - Static method in class elki.utilities.datastructures.iterator.EmptyIterator
-
Get an empty hierarchy iterator.
- EMPTY - Static variable in interface elki.database.ids.DoubleDBIDListIter
-
Static empty iterator.
- EMPTY - Static variable in class elki.datasource.parser.ArffParser
-
Empty line pattern.
- EMPTY_ALIASES - Static variable in class elki.utilities.ELKIServiceRegistry.Entry
-
Reusable empty array.
- EMPTY_ARRAY - Static variable in class elki.datasource.filter.normalization.columnwise.AttributeWiseMinMaxNormalization
-
Empty double array.
- EMPTY_CHILDREN - Static variable in class elki.itemsetmining.FPGrowth.FPNode
-
Constant for leaf nodes.
- EMPTY_CHILDREN - Static variable in class elki.result.Metadata
-
Empty list.
- EMPTY_DISTS - Static variable in class elki.database.ids.integer.DoubleIntegerDBIDArrayList
-
Empty.
- EMPTY_ENUMERATION - Variable in class elki.index.tree.BreadthFirstEnumeration
-
Represents an empty enumeration.
- EMPTY_IDS - Static variable in class elki.database.ids.integer.DoubleIntegerDBIDArrayList
-
Empty.
- EMPTY_INTS - Static variable in class elki.math.MathUtil
-
Empty integer array.
- EMPTY_ITERATOR - Static variable in class elki.database.ids.EmptyDBIDs
-
Empty DBID iterator.
- EMPTY_LABELS - Static variable in class elki.data.LabelList
-
Empty label list.
- EMPTY_PAGE - Static variable in class elki.persistent.OnDiskArrayPageFile
-
Indicates an empty page.
- EMPTY_PAGE - Static variable in class elki.persistent.PersistentPageFile
-
Indicates an empty page.
- EMPTY_PARENTS - Static variable in class elki.result.Metadata
-
Empty list.
- EMPTY_STRING - Static variable in class elki.utilities.io.ParseUtil
-
Preallocated exceptions.
- EMPTY_VECTOR - Static variable in class elki.data.model.CorrelationAnalysisSolution
-
Empty constant vector returned when no subspace was used.
- EmptyDatabaseConnection - Class in elki.datasource
-
Pseudo database that is empty.
- EmptyDatabaseConnection() - Constructor for class elki.datasource.EmptyDatabaseConnection
-
Constructor.
- EmptyDataException - Exception in elki.utilities.exceptions
-
Exception thrown when a database / relation is empty.
- EmptyDataException() - Constructor for exception elki.utilities.exceptions.EmptyDataException
-
Constructor.
- EmptyDBIDIterator() - Constructor for class elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
- EmptyDBIDs - Class in elki.database.ids
-
Empty DBID collection.
- EmptyDBIDs() - Constructor for class elki.database.ids.EmptyDBIDs
-
Constructor.
- EMPTYDBIDS - Static variable in class elki.database.ids.DBIDUtil
-
Final, global copy of empty DBIDs.
- EmptyDBIDs.EmptyDBIDIterator - Class in elki.database.ids
-
Iterator for empty DBIDs-
- EmptyIterator<O> - Class in elki.utilities.datastructures.iterator
-
Empty object iterator.
- EmptyIterator() - Constructor for class elki.utilities.datastructures.iterator.EmptyIterator
-
Private constructor, use static
EmptyIterator.empty()
instead. - emptyPages - Variable in class elki.persistent.AbstractStoringPageFile
-
A stack holding the empty page ids.
- emptyPagesSize - Variable in class elki.index.tree.TreeIndexHeader
-
The number of bytes additionally needed for the listing of empty pages of the headed page file.
- EmptyParameterization - Class in elki.utilities.optionhandling.parameterization
-
Parameterization handler that only allows the use of default values.
- EmptyParameterization() - Constructor for class elki.utilities.optionhandling.parameterization.EmptyParameterization
- enabled() - Method in interface elki.visualization.VisualizationMenuAction
-
Indicate if the menu option is enabled or greyed out.
- enabled() - Method in interface elki.visualization.VisualizationMenuToggle
-
Indicate if the menu option is enabled or greyed out.
- enabled() - Method in class elki.visualization.visualizers.actions.ClusterStyleAction.SetStyleAction
- enableExport(boolean) - Method in class elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the export menu.
- enableOverview(boolean) - Method in class elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the overview menu.
- enableStart() - Method in class elki.visualization.batikutil.DragableArea
-
Enable capturing of 'mousedown' events.
- enableStop() - Method in class elki.visualization.batikutil.DragableArea
-
Enable capturing of 'mousemove' and 'mouseup' events.
- ENABLEVIS_ID - Static variable in class elki.visualization.VisualizerParameterizer.Par
-
Parameter to enable visualizers
- enableVisualizers - Variable in class elki.visualization.VisualizerParameterizer.Par
-
Pattern to enable visualizers
- enableWriter(boolean) - Method in class elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the writer menu.
- encoder - Variable in class elki.utilities.io.ByteArrayUtil.StringSerializer
-
Encoder.
- end - Variable in class elki.clustering.hierarchical.AGNES.Instance
-
Active set size
- end - Variable in class elki.clustering.kmeans.KDTreePruningKMeans.KDNode
-
End index of child nodes (exclusive).
- end - Variable in class elki.database.ids.integer.ArrayModifiableIntegerDBIDs.Slice
-
Slice positions.
- end - Variable in class elki.database.ids.integer.ArrayStaticIntegerDBIDs.Slice
-
Slice positions.
- end - Variable in class elki.database.ids.integer.DoubleIntegerDBIDSubList
-
End offset.
- end - Variable in class elki.database.ids.integer.IntegerDBIDPair.Slice
-
Slice positions.
- end - Variable in class elki.logging.statistics.MillisTimeDuration
-
Tracking variables.
- end - Variable in class elki.logging.statistics.NanoDuration
-
Tracking variables.
- end - Variable in class elki.outlier.density.HySortOD.TreeStrategy.Node
-
Index information.
- end - Variable in class elki.parallel.ParallelExecutor.BlockArrayRunner
-
End position
- end - Variable in class elki.utilities.datastructures.range.ExponentialIntGenerator
-
End value.
- end - Variable in class elki.utilities.io.LineReader
-
Current position, and length of buffer
- end - Variable in class elki.utilities.io.Tokenizer
-
Current positions of result and iterator.
- end() - Method in interface elki.logging.statistics.Duration
-
Finish the timer.
- end() - Method in class elki.logging.statistics.MillisTimeDuration
- end() - Method in class elki.logging.statistics.NanoDuration
- END_OF_STREAM - elki.datasource.bundle.BundleStreamSource.Event
- END_VALUE - Static variable in class elki.utilities.datastructures.iterator.IterableIt
-
End sentinel value.
- endcg - Variable in class elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
-
Normalization term E[NDCG].
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in interface elki.visualization.batikutil.DragableArea.DragListener
-
Method called when a drag was ended.
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.batikutil.DragableArea
-
Method called when a drag was ended.
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.optics.OPTICSPlotSelectionVisualization.Instance
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.parallel.selection.SelectionToolAxisRangeVisualization.Instance
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.parallel.selection.SelectionToolLineVisualization.Instance
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.scatterplot.selection.MoveObjectsToolVisualization.Instance
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.scatterplot.selection.SelectionToolCubeVisualization.Instance
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.scatterplot.selection.SelectionToolDotVisualization.Instance
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class elki.visualization.visualizers.silhouette.SilhouettePlotSelectionToolVisualization.Instance
- endindex - Variable in class elki.clustering.optics.OPTICSXi.SteepArea
-
End index of steep area
- endIndex - Variable in class elki.data.model.OPTICSModel
-
End index
- ENDLABEL - elki.visualization.svg.SVGSimpleLinearAxis.LabelStyle
- endsWith(CharSequence, CharSequence) - Static method in class elki.utilities.io.FormatUtil
-
Similar to
String.endsWith(String)
but for buffers. - endvec - Variable in class elki.visualization.parallel3d.util.Arcball1DOFAdapter
-
Ending point of drag.
- enlargement(SpatialComparable, SpatialComparable) - Static method in class elki.data.spatial.SpatialUtil
-
Compute the enlargement obtained by adding an object to an existing object.
- EnsembleEstimator - Class in elki.math.statistics.intrinsicdimensionality
-
Ensemble estimator taking the median of three of our best estimators.
- EnsembleEstimator() - Constructor for class elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
- EnsembleVoting - Interface in elki.utilities.ensemble
-
Interface for ensemble voting rules
- EnsembleVotingInverseMultiplicative - Class in elki.utilities.ensemble
-
Inverse multiplicative voting: \( 1-\prod_i(1-s_i) \)
- EnsembleVotingInverseMultiplicative() - Constructor for class elki.utilities.ensemble.EnsembleVotingInverseMultiplicative
-
Constructor.
- EnsembleVotingInverseMultiplicative.Par - Class in elki.utilities.ensemble
-
Parameterization class.
- EnsembleVotingMax - Class in elki.utilities.ensemble
-
Simple combination rule, by taking the maximum.
- EnsembleVotingMax() - Constructor for class elki.utilities.ensemble.EnsembleVotingMax
-
Constructor.
- EnsembleVotingMean - Class in elki.utilities.ensemble
-
Simple combination rule, by taking the mean
- EnsembleVotingMean() - Constructor for class elki.utilities.ensemble.EnsembleVotingMean
-
Constructor.
- EnsembleVotingMedian - Class in elki.utilities.ensemble
-
Simple combination rule, by taking the median.
- EnsembleVotingMedian(double) - Constructor for class elki.utilities.ensemble.EnsembleVotingMedian
-
Constructor.
- EnsembleVotingMedian.Par - Class in elki.utilities.ensemble
-
Parameterization class.
- EnsembleVotingMin - Class in elki.utilities.ensemble
-
Simple combination rule, by taking the minimum.
- EnsembleVotingMin() - Constructor for class elki.utilities.ensemble.EnsembleVotingMin
-
Constructor.
- EnsembleVotingMultiplicative - Class in elki.utilities.ensemble
-
Inverse multiplicative voting: \( \prod_i s_i \)
- EnsembleVotingMultiplicative() - Constructor for class elki.utilities.ensemble.EnsembleVotingMultiplicative
-
Constructor.
- EnsembleVotingMultiplicative.Par - Class in elki.utilities.ensemble
-
Parameterization class.
- ensureArray(DBIDs) - Static method in class elki.database.ids.DBIDUtil
-
Ensure that the given DBIDs are array-indexable.
- ensureBuffer(int, ByteBuffer, WritableByteChannel) - Method in class elki.datasource.bundle.BundleWriter
-
Ensure the buffer is large enough.
- ensureClusteringResult(Database) - Static method in class elki.evaluation.AutomaticEvaluation
-
Ensure that the result contains at least one Clustering.
- ensureCompleted(Logging) - Method in class elki.logging.progress.FiniteProgress
-
Ensure that the progress was completed, to make progress bars disappear
- ensureCompleted(FiniteProgress) - Method in class elki.logging.Logging
-
Increment a progress (unless
null
). - ensureModifiable(DBIDs) - Static method in class elki.database.ids.DBIDUtil
-
Ensure modifiable.
- ensureSelectionResult(Database) - Static method in class elki.result.SelectionResult
-
Ensure that there also is a selection container object.
- ensureSet(DBIDs) - Static method in class elki.database.ids.DBIDUtil
-
Ensure that the given DBIDs support fast "contains" operations.
- ensureSize() - Method in class elki.itemsetmining.FPGrowth.FPNode
-
Ensure we have enough storage.
- ensureSize(int) - Method in class elki.database.ids.integer.ArrayModifiableIntegerDBIDs
-
Resize as desired.
- ensureSize(int) - Method in class elki.persistent.OnDiskArray
-
Ensure that the file can fit the given number of records.
- entries - Variable in class elki.index.tree.AbstractNode
-
The entries (children) of this node.
- entries - Variable in class elki.index.tree.spatial.rstarvariants.strategies.split.TopologicalSplitter.Split
-
The entries we process.
- entropy - Variable in class elki.evaluation.clustering.ClusterContingencyTable
-
Entropy-based measures
- Entropy - Class in elki.evaluation.clustering
-
Entropy based measures, implemented using natural logarithms.
- Entropy(ClusterContingencyTable) - Constructor for class elki.evaluation.clustering.Entropy
-
Constructor.
- entropyFirst - Variable in class elki.evaluation.clustering.Entropy
-
Entropy in first
- entropyFirst() - Method in class elki.evaluation.clustering.Entropy
-
Get the entropy of the first clustering (not normalized, 0 = equal).
- entropyJoint - Variable in class elki.evaluation.clustering.Entropy
-
Joint entropy
- entropyJoint() - Method in class elki.evaluation.clustering.Entropy
-
Get the joint entropy of both clusterings (not normalized, 0 = equal).
- entropyPowers() - Method in class elki.evaluation.clustering.Entropy
-
Get Powers entropy (normalized, 0 = equal) Powers = 1 - NMI_Sum
- entropySecond - Variable in class elki.evaluation.clustering.Entropy
-
Entropy in second
- entropySecond() - Method in class elki.evaluation.clustering.Entropy
-
Get the entropy of the second clustering (not normalized, 0 = equal).
- entry - Variable in class elki.index.tree.IndexTreePath
-
The entry of this component.
- entry - Variable in class elki.index.tree.metrical.mtreevariants.strategies.split.distribution.DistanceEntry
-
The entry of the Index.
- Entry() - Constructor for class elki.utilities.ELKIServiceRegistry.Entry
- entry1 - Variable in class elki.clustering.optics.DeLiClu.SpatialObjectPair
-
The first entry of this pair.
- entry2 - Variable in class elki.clustering.optics.DeLiClu.SpatialObjectPair
-
The second entry of this pair.
- entrySet() - Method in class elki.visualization.gui.overview.RectangleArranger
-
The items contained in the map.
- enumClass - Variable in class elki.utilities.optionhandling.parameters.EnumParameter
-
Reference to the actual enum type, for T.valueOf().
- EnumParameter<E extends java.lang.Enum<E>> - Class in elki.utilities.optionhandling.parameters
-
Parameter class for a parameter specifying an enum type.
- EnumParameter(OptionID, Class<E>) - Constructor for class elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and default value.
- EnumParameter(OptionID, Class<E>, E) - Constructor for class elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and default value.
- EnumParameterConfigurator - Class in elki.gui.configurator
-
Panel to configure EnumParameters by offering a dropdown to choose from.
- EnumParameterConfigurator(EnumParameter<?>, JComponent) - Constructor for class elki.gui.configurator.EnumParameterConfigurator
- EpanechnikovKernelDensityFunction - Class in elki.math.statistics.kernelfunctions
-
Epanechnikov kernel density estimator.
- EpanechnikovKernelDensityFunction() - Constructor for class elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction
-
Private, empty constructor.
- EpanechnikovKernelDensityFunction.Par - Class in elki.math.statistics.kernelfunctions
-
Parameterization stub.
- eps - Variable in class elki.outlier.subspace.OUTRES
-
The epsilon (in 2d) parameter
- eps - Variable in class elki.outlier.subspace.OUTRES.Par
-
Query radius
- eps - Variable in class elki.svm.AbstractSingleSVM
- eps - Variable in class elki.svm.solver.Solver
- EPS - elki.result.ExportVisualizations.Format
- epsilon - Variable in class elki.clustering.correlation.COPAC.Settings
-
Epsilon value for GDBSCAN.
- epsilon - Variable in class elki.clustering.correlation.FourC.Settings
-
Query radius epsilon.
- epsilon - Variable in class elki.clustering.dbscan.DBSCAN
-
Holds the epsilon radius threshold.
- epsilon - Variable in class elki.clustering.dbscan.DBSCAN.Par
-
Holds the epsilon radius threshold.
- epsilon - Variable in class elki.clustering.dbscan.GriDBSCAN
-
Holds the epsilon radius threshold.
- epsilon - Variable in class elki.clustering.dbscan.GriDBSCAN.Instance
-
Holds the epsilon radius threshold.
- epsilon - Variable in class elki.clustering.dbscan.predicates.AbstractRangeQueryNeighborPredicate
-
Range to query with.
- epsilon - Variable in class elki.clustering.dbscan.predicates.EpsilonNeighborPredicate
-
Range to query with
- epsilon - Variable in class elki.clustering.dbscan.predicates.EpsilonNeighborPredicate.Instance
-
Range to query with
- epsilon - Variable in class elki.clustering.dbscan.predicates.SimilarityNeighborPredicate
-
Range to query with
- epsilon - Variable in class elki.clustering.dbscan.predicates.SimilarityNeighborPredicate.Instance
-
Range to query with
- epsilon - Variable in class elki.clustering.optics.AbstractOPTICS
-
Holds the maximum distance to search for objects (performance parameter)
- epsilon - Variable in class elki.clustering.SNNClustering
-
Epsilon radius threshold.
- epsilon - Variable in class elki.clustering.subspace.DiSH
-
Holds the value of
DiSH.Par.EPSILON_ID
. - epsilon - Variable in class elki.clustering.subspace.DiSH.Par
-
The epsilon value for each dimension.
- epsilon - Variable in class elki.clustering.subspace.PreDeCon.Settings
-
Query radius parameter epsilon.
- epsilon - Variable in class elki.clustering.subspace.SUBCLU
-
Maximum radius of the neighborhood to be considered.
- epsilon - Variable in class elki.clustering.subspace.SUBCLU.Par
-
Maximum radius of the neighborhood to be considered.
- epsilon - Variable in class elki.clustering.uncertain.FDBSCAN.Par
-
Epsilon radius
- epsilon - Variable in class elki.clustering.uncertain.FDBSCANNeighborPredicate
-
Epsilon radius
- epsilon - Variable in class elki.clustering.uncertain.FDBSCANNeighborPredicate.Instance
-
The epsilon distance a neighbor may have at most.
- epsilon - Variable in class elki.clustering.uncertain.FDBSCANNeighborPredicate.Par
-
Epsilon radius
- epsilon - Variable in class elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The current epsilon value.
- EPSILON_ID - Static variable in class elki.clustering.dbscan.DBSCAN.Par
-
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified.
- EPSILON_ID - Static variable in class elki.clustering.subspace.DiSH.Par
-
A comma separated list of positive doubles specifying the maximum radius of the neighborhood to be considered in each dimension for determination of the preference vector (default is
DiSH.Par.DEFAULT_EPSILON
in each dimension). - EPSILON_ID - Static variable in class elki.clustering.subspace.HiSC.Par
-
Parameter to specify the maximum distance between two vectors with equal preference vectors before considering them as parallel, must be a double equal to or greater than 0.
- EPSILON_ID - Static variable in class elki.clustering.subspace.SUBCLU.Par
-
Maximum radius of the neighborhood to be considered.
- EpsilonNeighborPredicate<O> - Class in elki.clustering.dbscan.predicates
-
The default DBSCAN and OPTICS neighbor predicate, using an epsilon-neighborhood.
- EpsilonNeighborPredicate(double, Distance<? super O>) - Constructor for class elki.clustering.dbscan.predicates.EpsilonNeighborPredicate
-
Full constructor.
- EpsilonNeighborPredicate.Instance - Class in elki.clustering.dbscan.predicates
-
Instance for a particular data set.
- epsilons - Variable in class elki.outlier.subspace.OUTRES.KernelDensityEstimator
-
Epsilon values for different subspace dimensionalities
- epsilonsq - Variable in class elki.clustering.dbscan.predicates.COPACNeighborPredicate
-
Squared value of epsilon.
- epsilonsq - Variable in class elki.clustering.uncertain.FDBSCANNeighborPredicate.Instance
-
The epsilon distance a neighbor may have at most.
- EpsilonSVR - Class in elki.svm
- EpsilonSVR(double, boolean, double, double, double) - Constructor for class elki.svm.EpsilonSVR
- equal(long[], long[]) - Static method in class elki.utilities.datastructures.BitsUtil
-
Test two bitsets for equality
- equal(long, long) - Static method in class elki.utilities.datastructures.BitsUtil
-
Test two bitsets for equality
- equal(DBIDRef, DBIDRef) - Method in interface elki.database.ids.DBIDFactory
-
Compare two DBIDs, for equality testing.
- equal(DBIDRef, DBIDRef) - Static method in class elki.database.ids.DBIDUtil
-
Test two DBIDs for equality.
- equal(DBIDRef, DBIDRef) - Method in class elki.database.ids.integer.AbstractIntegerDBIDFactory
- equals(double[][], double[][]) - Static method in class elki.math.linearalgebra.VMath
-
Test for equality
- equals(double[], double[]) - Static method in class elki.math.linearalgebra.VMath
-
Compare for equality.
- equals(SpatialComparable, SpatialComparable) - Static method in class elki.data.spatial.SpatialUtil
-
Test two SpatialComparables for equality.
- equals(Object) - Method in class elki.clustering.correlation.cash.CASHInterval
- equals(Object) - Method in class elki.clustering.optics.DeLiClu.SpatialObjectPair
-
equals is used in updating the heap!
- equals(Object) - Method in class elki.clustering.optics.OPTICSHeapEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class elki.data.BitVector
-
Indicates whether some other object is "equal to" this BitVector.
- equals(Object) - Method in class elki.data.ClassLabel
-
Any ClassLabel should ensure a natural ordering that is consistent with equals.
- equals(Object) - Method in class elki.data.ExternalID
- equals(Object) - Method in class elki.data.HyperBoundingBox
- equals(Object) - Method in class elki.data.SimpleClassLabel
- equals(Object) - Method in class elki.data.Subspace
- equals(Object) - Method in interface elki.database.ids.DBID
-
Deprecated.
- equals(Object) - Method in interface elki.database.ids.DBIDRef
-
Deprecated.
- equals(Object) - Method in class elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
- equals(Object) - Method in class elki.database.ids.integer.ArrayStaticIntegerDBIDs.Itr
- equals(Object) - Method in class elki.database.ids.integer.IntegerDBID
-
Deprecated.
- equals(Object) - Method in class elki.database.ids.integer.IntegerDBID.Itr
- equals(Object) - Method in class elki.database.ids.integer.IntegerDBIDPair
- equals(Object) - Method in class elki.database.ids.integer.IntegerDBIDRange.Itr
- equals(Object) - Method in class elki.database.ids.integer.IntegerDBIDVar.Itr
- equals(Object) - Method in class elki.distance.adapter.AbstractSimilarityAdapter
- equals(Object) - Method in class elki.distance.ArcCosineDistance
- equals(Object) - Method in class elki.distance.ArcCosineUnitlengthDistance
- equals(Object) - Method in class elki.distance.BrayCurtisDistance
- equals(Object) - Method in class elki.distance.CanberraDistance
- equals(Object) - Method in class elki.distance.ClarkDistance
- equals(Object) - Method in class elki.distance.colorhistogram.HistogramIntersectionDistance
- equals(Object) - Method in class elki.distance.correlation.AbsolutePearsonCorrelationDistance
- equals(Object) - Method in class elki.distance.correlation.AbsoluteUncenteredCorrelationDistance
- equals(Object) - Method in class elki.distance.correlation.PearsonCorrelationDistance
- equals(Object) - Method in class elki.distance.correlation.SquaredPearsonCorrelationDistance
- equals(Object) - Method in class elki.distance.correlation.SquaredUncenteredCorrelationDistance
- equals(Object) - Method in class elki.distance.correlation.UncenteredCorrelationDistance
- equals(Object) - Method in class elki.distance.correlation.WeightedPearsonCorrelationDistance
- equals(Object) - Method in class elki.distance.correlation.WeightedSquaredPearsonCorrelationDistance
- equals(Object) - Method in class elki.distance.CosineDistance
- equals(Object) - Method in class elki.distance.CosineUnitlengthDistance
- equals(Object) - Method in class elki.distance.external.DiskCacheBasedDoubleDistance
- equals(Object) - Method in class elki.distance.external.DiskCacheBasedFloatDistance
- equals(Object) - Method in class elki.distance.external.FileBasedSparseDoubleDistance
- equals(Object) - Method in class elki.distance.external.FileBasedSparseFloatDistance
- equals(Object) - Method in class elki.distance.geo.DimensionSelectingLatLngDistance
- equals(Object) - Method in class elki.distance.geo.LatLngDistance
- equals(Object) - Method in class elki.distance.geo.LngLatDistance
- equals(Object) - Method in class elki.distance.histogram.HistogramMatchDistance
- equals(Object) - Method in class elki.distance.histogram.KolmogorovSmirnovDistance
- equals(Object) - Method in class elki.distance.MatrixWeightedQuadraticDistance
- equals(Object) - Method in class elki.distance.minkowski.EuclideanDistance
- equals(Object) - Method in class elki.distance.minkowski.LPIntegerNormDistance
- equals(Object) - Method in class elki.distance.minkowski.LPNormDistance
- equals(Object) - Method in class elki.distance.minkowski.ManhattanDistance
- equals(Object) - Method in class elki.distance.minkowski.MaximumDistance
- equals(Object) - Method in class elki.distance.minkowski.MinimumDistance
- equals(Object) - Method in class elki.distance.minkowski.SquaredEuclideanDistance
- equals(Object) - Method in class elki.distance.minkowski.WeightedLPNormDistance
- equals(Object) - Method in class elki.distance.minkowski.WeightedSquaredEuclideanDistance
- equals(Object) - Method in class elki.distance.probabilistic.ChiSquaredDistance
- equals(Object) - Method in class elki.distance.probabilistic.FisherRaoDistance
- equals(Object) - Method in class elki.distance.probabilistic.HellingerDistance
- equals(Object) - Method in class elki.distance.probabilistic.JeffreyDivergenceDistance
- equals(Object) - Method in class elki.distance.probabilistic.KullbackLeiblerDivergenceAsymmetricDistance
- equals(Object) - Method in class elki.distance.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistance
- equals(Object) - Method in class elki.distance.probabilistic.TriangularDiscriminationDistance
- equals(Object) - Method in class elki.distance.probabilistic.TriangularDistance
- equals(Object) - Method in class elki.distance.RandomStableDistance
- equals(Object) - Method in class elki.distance.set.HammingDistance
- equals(Object) - Method in class elki.distance.set.JaccardSimilarityDistance
- equals(Object) - Method in class elki.distance.strings.LevenshteinDistance
- equals(Object) - Method in class elki.distance.strings.NormalizedLevenshteinDistance
- equals(Object) - Method in class elki.distance.subspace.AbstractDimensionsSelectingDistance
- equals(Object) - Method in class elki.distance.subspace.OnedimensionalDistance
- equals(Object) - Method in class elki.distance.subspace.SubspaceEuclideanDistance
- equals(Object) - Method in class elki.distance.subspace.SubspaceLPNormDistance
- equals(Object) - Method in class elki.distance.subspace.SubspaceManhattanDistance
- equals(Object) - Method in class elki.distance.subspace.SubspaceMaximumDistance
- equals(Object) - Method in class elki.distance.timeseries.AbstractEditDistance
- equals(Object) - Method in class elki.distance.timeseries.EDRDistance
- equals(Object) - Method in class elki.distance.timeseries.ERPDistance
- equals(Object) - Method in class elki.distance.timeseries.LCSSDistance
- equals(Object) - Method in class elki.evaluation.clustering.pairsegments.Segment
- equals(Object) - Method in class elki.index.tree.IndexTreePath
- equals(Object) - Method in class elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
-
Returns true if this object is the same as the o argument;
false
otherwise. - equals(Object) - Method in class elki.index.tree.metrical.mtreevariants.MTreeDirectoryEntry
- equals(Object) - Method in class elki.index.tree.metrical.mtreevariants.MTreeLeafEntry
- equals(Object) - Method in class elki.index.tree.metrical.mtreevariants.query.MTreeSearchCandidate
- equals(Object) - Method in class elki.index.tree.spatial.SpatialDirectoryEntry
- equals(Object) - Method in class elki.index.tree.spatial.SpatialPointLeafEntry
- equals(Object) - Method in class elki.itemsetmining.DenseItemset
- equals(Object) - Method in class elki.itemsetmining.Itemset
- equals(Object) - Method in class elki.itemsetmining.OneItemset
- equals(Object) - Method in class elki.itemsetmining.SmallDenseItemset
- equals(Object) - Method in class elki.outlier.density.HySortOD.Hypercube
- equals(Object) - Method in class elki.outlier.subspace.AggarwalYuEvolutionary.Individuum
- equals(Object) - Method in class elki.persistent.AbstractExternalizablePage
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class elki.utilities.pairs.DoubleDoublePair
-
Trivial equals implementation
- equals(Object) - Method in class elki.utilities.pairs.DoubleIntPair
-
Trivial equals implementation
- equals(Object) - Method in class elki.utilities.pairs.DoubleObjPair
- equals(Object) - Method in class elki.utilities.pairs.IntDoublePair
-
Trivial equals implementation
- equals(Object) - Method in class elki.utilities.pairs.IntIntPair
-
Trivial equals implementation
- equals(Object) - Method in class elki.utilities.pairs.Pair
-
Simple equals statement.
- equals(Object) - Method in class elki.visualization.VisualizationTask
- equalsPlusTimes(double[], double[], double[], double) - Method in class elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
-
Compute out = x + y * a, for 2d.
- equationsToString(int) - Method in class elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(String, int) - Method in class elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(String, NumberFormat) - Method in class elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(NumberFormat) - Method in class elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- erf(double) - Static method in class elki.math.statistics.distribution.NormalDistribution
-
Error function for Gaussian distributions = Normal distributions.
- ERF_COEFF1 - Static variable in class elki.math.statistics.distribution.NormalDistribution
-
T.
- ERF_COEFF2 - Static variable in class elki.math.statistics.distribution.NormalDistribution
-
T.
- erfc(double) - Static method in class elki.math.statistics.distribution.NormalDistribution
-
Complementary error function for Gaussian distributions = Normal distributions.
- erfcinv(double) - Static method in class elki.math.statistics.distribution.NormalDistribution
-
Inverse error function.
- ErfcStddevWeight - Class in elki.math.linearalgebra.pca.weightfunctions
-
Gaussian Error Function Weight function, scaled using stddev using: \( \text{erfc}(\frac{1}{\sqrt{2}} \frac{\text{distance}}{\sigma}) \).
- ErfcStddevWeight() - Constructor for class elki.math.linearalgebra.pca.weightfunctions.ErfcStddevWeight
- ErfcWeight - Class in elki.math.linearalgebra.pca.weightfunctions
-
Gaussian Error Function Weight function, scaled such that the result it 0.1 when the distance is the maximum using: \( \text{erfc}(1.1630871536766736 \frac{\text{distance}}{\max}) \).
- ErfcWeight() - Constructor for class elki.math.linearalgebra.pca.weightfunctions.ErfcWeight
- ERiC - Class in elki.clustering.correlation
-
Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.
- ERiC(ERiC.Settings) - Constructor for class elki.clustering.correlation.ERiC
-
Constructor.
- ERiC.Par - Class in elki.clustering.correlation
-
Parameterization class.
- ERiC.Settings - Class in elki.clustering.correlation
-
Class to wrap the ERiC settings.
- ERiCNeighborPredicate - Class in elki.clustering.dbscan.predicates
-
ERiC neighborhood predicate.
- ERiCNeighborPredicate(ERiC.Settings) - Constructor for class elki.clustering.dbscan.predicates.ERiCNeighborPredicate
-
Constructor.
- ERiCNeighborPredicate.Instance - Class in elki.clustering.dbscan.predicates
-
Instance for a particular data set.
- ERiCNeighborPredicate.Par - Class in elki.clustering.dbscan.predicates
-
Parameterization class.
- ERPDistance - Class in elki.distance.timeseries
-
Edit Distance With Real Penalty distance for numerical vectors.
- ERPDistance(double, double) - Constructor for class elki.distance.timeseries.ERPDistance
-
Constructor.
- ERPDistance.Par - Class in elki.distance.timeseries
-
Parameterization class.
- err - Variable in class elki.logging.CLISmartHandler
-
Output stream for error output.
- ERR_DIMENSIONS - Static variable in class elki.math.linearalgebra.VMath
-
Error message when dimensionalities do not agree.
- ERR_INVALID_RANGE - Static variable in class elki.math.linearalgebra.VMath
-
Error message when min > max is given as a range.
- ERR_MATRIX_DIMENSIONS - Static variable in class elki.math.linearalgebra.VMath
-
Error message when matrix dimensionalities do not agree.
- ERR_MATRIX_INNERDIM - Static variable in class elki.math.linearalgebra.VMath
-
Error message when matrix dimensionalities do not agree.
- ERR_MATRIX_NONSQUARE - Static variable in class elki.math.linearalgebra.VMath
-
Error when a non-square matrix is used with determinant.
- ERR_MATRIX_NOT_SPD - Static variable in class elki.math.linearalgebra.VMath
-
When a symmetric positive definite matrix is required.
- ERR_MATRIX_RANK_DEFICIENT - Static variable in class elki.math.linearalgebra.QRDecomposition
-
When a matrix is rank deficient.
- ERR_MATRIX_RANK_DEFICIENT - Static variable in class elki.math.linearalgebra.VMath
-
When a matrix is rank deficient.
- ERR_SINGULAR - Static variable in class elki.math.linearalgebra.VMath
-
Error with a singular matrix.
- ERR_TOO_LITTLE_WEIGHT - Static variable in class elki.math.linearalgebra.CovarianceMatrix
-
Error message reported when too little data (weight <= 1) in matrix.
- ERR_VEC_DIMENSIONS - Static variable in class elki.math.linearalgebra.VMath
-
Error message when vector dimensionalities do not agree.
- errformat - Variable in class elki.gui.util.LogPane
-
Formatter for error messages
- errformat - Variable in class elki.logging.CLISmartHandler
-
Formatter for error messages
- error(CharSequence) - Method in class elki.logging.Logging
-
Log a message at the 'severe' level.
- error(CharSequence, Throwable) - Method in class elki.logging.Logging
-
Log a message at the 'severe' level.
- ERROR - elki.application.internal.CheckParameterizables.State
- ErrorFormatter - Class in elki.logging
-
Format a log record for error output, including a stack trace if available.
- ErrorFormatter() - Constructor for class elki.logging.ErrorFormatter
-
Constructor.
- errors - Variable in class elki.utilities.optionhandling.parameterization.AbstractParameterization
-
Errors
- errors - Variable in class elki.utilities.optionhandling.parameterization.UnParameterization
-
Errors
- errorsTo(Parameterization) - Method in class elki.utilities.optionhandling.parameterization.ChainedParameterization
-
Set the error target, since there is no unique way where errors can be reported.
- errorTarget - Variable in class elki.utilities.optionhandling.parameterization.ChainedParameterization
-
Error target
- errorVector(NumberVector) - Method in class elki.data.model.CorrelationAnalysisSolution
-
Returns the error vectors after projection.
- errStyle - Variable in class elki.gui.util.LogPane
-
Error message style
- esq - Variable in class elki.math.geodesy.AbstractEarthModel
-
Derived model parameters: e and e squared.
- estimate(double[]) - Method in interface elki.math.statistics.distribution.estimator.DistributionEstimator
-
General form of the parameter estimation
- estimate(double[]) - Method in interface elki.math.statistics.intrinsicdimensionality.DistanceBasedIntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(double[], int) - Method in interface elki.math.statistics.intrinsicdimensionality.DistanceBasedIntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(double, double) - Method in class elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
Estimate parameters from minimum and maximum observed.
- estimate(double, double, int) - Method in class elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
-
Estimate from simple characteristics.
- estimate(A, NumberArrayAdapter<?, ? super A>) - Method in interface elki.math.statistics.intrinsicdimensionality.DistanceBasedIntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.AggregatedHillEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in interface elki.math.statistics.intrinsicdimensionality.DistanceBasedIntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.GEDEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.HillEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.LMomentsEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.MOMEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.PWM2Estimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.PWMEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.RABIDEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.RVEstimator
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class elki.math.statistics.intrinsicdimensionality.ZipfEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.DistributionEstimator
-
General form of the parameter estimation
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.GammaChoiWetteEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.InverseGaussianMLEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.LaplaceMLEEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.LMMDistributionEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.LogMADDistributionEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.LogMOMDistributionEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.LogNormalLevenbergMarquardtKDEEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.MADDistributionEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.meta.BestFitEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.meta.TrimmedEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.meta.WinsorizingEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface elki.math.statistics.distribution.estimator.MOMDistributionEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.NormalLevenbergMarquardtKDEEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.RayleighMLEEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
- estimate(A, NumberArrayAdapter<?, A>) - Method in class elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
- estimate(DBIDs, Relation<? extends NumberVector>) - Method in class elki.math.statistics.intrinsicdimensionality.LPCAEstimator
-
Returns an ID estimate based on the specified filter for the given point DBID set and relation.
- estimate(KNNSearcher<DBIDRef>, DistanceQuery<?>, DBIDRef, int) - Method in class elki.math.statistics.intrinsicdimensionality.ABIDEstimator
- estimate(KNNSearcher<DBIDRef>, DistanceQuery<?>, DBIDRef, int) - Method in class elki.math.statistics.intrinsicdimensionality.ALIDEstimator
- estimate(KNNSearcher<DBIDRef>, DistanceQuery<?>, DBIDRef, int) - Method in class elki.math.statistics.intrinsicdimensionality.RABIDEstimator
- estimate(KNNSearcher<DBIDRef>, DistanceQuery<? extends NumberVector>, DBIDRef, int) - Method in class elki.math.statistics.intrinsicdimensionality.LPCAEstimator
- estimate(KNNSearcher<DBIDRef>, DistanceQuery<? extends Object>, DBIDRef, int) - Method in interface elki.math.statistics.intrinsicdimensionality.DistanceBasedIntrinsicDimensionalityEstimator
- estimate(KNNSearcher<DBIDRef>, DistanceQuery<? extends Object>, DBIDRef, int) - Method in class elki.math.statistics.intrinsicdimensionality.TightLIDEstimator
- estimate(KNNSearcher<DBIDRef>, DistanceQuery<? extends O>, DBIDRef, int) - Method in interface elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a Reference Point, a KNNSearcher and the neighborhood size k.
- estimate(RangeSearcher<DBIDRef>, DistanceQuery<?>, DBIDRef, double) - Method in class elki.math.statistics.intrinsicdimensionality.ALIDEstimator
- estimate(RangeSearcher<DBIDRef>, DistanceQuery<? extends NumberVector>, DBIDRef, double) - Method in class elki.math.statistics.intrinsicdimensionality.LPCAEstimator
- estimate(RangeSearcher<DBIDRef>, DistanceQuery<? extends Object>, DBIDRef, double) - Method in interface elki.math.statistics.intrinsicdimensionality.DistanceBasedIntrinsicDimensionalityEstimator
- estimate(RangeSearcher<DBIDRef>, DistanceQuery<? extends Object>, DBIDRef, double) - Method in class elki.math.statistics.intrinsicdimensionality.TightLIDEstimator
- estimate(RangeSearcher<DBIDRef>, DistanceQuery<? extends O>, DBIDRef, double) - Method in interface elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(DoubleMinMax) - Method in class elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
Estimate parameters from minimum and maximum observed.
- estimateDensities(Relation<O>, KNNSearcher<DBIDRef>, DBIDs, WritableDataStore<double[]>) - Method in class elki.outlier.lof.KDEOS
-
Perform the kernel density estimation step.
- estimateEigenvalue(double[][], double[]) - Method in class elki.datasource.filter.transform.FastMultidimensionalScalingTransform
-
Estimate the (singed!)
- estimateFromExpMeanVariance(MeanVariance) - Method in class elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.GammaLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.GeneralizedLogisticAlternateLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.GeneralizedParetoLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.GumbelLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.LaplaceLMMEstimator
- estimateFromLMoments(double[]) - Method in interface elki.math.statistics.distribution.estimator.LMMDistributionEstimator
-
Estimate from the L-Moments.
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.LogisticLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.LogNormalBilkovaLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.LogNormalLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.NormalLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.RayleighLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.SkewGNormalLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.UniformLMMEstimator
- estimateFromLMoments(double[]) - Method in class elki.math.statistics.distribution.estimator.WeibullLMMEstimator
- estimateFromLogMeanVariance(MeanVariance, double) - Method in interface elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
-
Estimate the distribution from mean and variance.
- estimateFromLogMeanVariance(MeanVariance, double) - Method in class elki.math.statistics.distribution.estimator.LogNormalLogMOMEstimator
- estimateFromLogMedianMAD(double, double, double) - Method in class elki.math.statistics.distribution.estimator.LogLogisticMADEstimator
- estimateFromLogMedianMAD(double, double, double) - Method in interface elki.math.statistics.distribution.estimator.LogMADDistributionEstimator
-
General form of the parameter estimation
- estimateFromLogMedianMAD(double, double, double) - Method in class elki.math.statistics.distribution.estimator.LogNormalLogMADEstimator
- estimateFromLogMedianMAD(double, double, double) - Method in class elki.math.statistics.distribution.estimator.WeibullLogMADEstimator
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in class elki.math.statistics.distribution.estimator.LogGammaLogMOMEstimator
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in interface elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in interface elki.math.statistics.distribution.estimator.LogMOMDistributionEstimator
-
General form of the parameter estimation
- estimateFromMeanVariance(MeanVariance) - Method in class elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
- estimateFromMeanVariance(MeanVariance) - Method in class elki.math.statistics.distribution.estimator.GammaMOMEstimator
- estimateFromMeanVariance(MeanVariance) - Method in class elki.math.statistics.distribution.estimator.InverseGaussianMOMEstimator
- estimateFromMeanVariance(MeanVariance) - Method in interface elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
-
Estimate the distribution from mean and variance.
- estimateFromMeanVariance(MeanVariance) - Method in class elki.math.statistics.distribution.estimator.NormalMOMEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.CauchyMADEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.ExponentialMADEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.GumbelMADEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.LaplaceMADEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.LogisticMADEstimator
- estimateFromMedianMAD(double, double) - Method in interface elki.math.statistics.distribution.estimator.MADDistributionEstimator
-
General form of the parameter estimation
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.NormalMADEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.RayleighMADEstimator
- estimateFromMedianMAD(double, double) - Method in class elki.math.statistics.distribution.estimator.UniformMADEstimator
- estimateFromStatisticalMoments(StatisticalMoments) - Method in class elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
- estimateFromStatisticalMoments(StatisticalMoments) - Method in interface elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
- estimateFromStatisticalMoments(StatisticalMoments) - Method in interface elki.math.statistics.distribution.estimator.MOMDistributionEstimator
-
General form of the parameter estimation
- estimateID(DBIDRef, DoubleDBIDListIter, double[]) - Method in class elki.outlier.intrinsic.ISOS
-
Estimate the local intrinsic dimensionality.
- estimateInitialBeta(double[], double) - Static method in class elki.projection.PerplexityAffinityMatrixBuilder
-
Estimate beta from the distances in a row.
- estimateInitialBeta(DBIDRef, DoubleDBIDListIter, double) - Static method in class elki.outlier.distance.SOS
-
Estimate beta from the distances in a row.
- EstimateIntrinsicDimensionality<O> - Class in elki.application.statistics
-
Estimate global average intrinsic dimensionality of a data set.
- EstimateIntrinsicDimensionality(InputStep, Distance<? super O>, IntrinsicDimensionalityEstimator<? super O>, double, double) - Constructor for class elki.application.statistics.EstimateIntrinsicDimensionality
-
Constructor.
- estimateLogDensity(NumberVector) - Method in class elki.clustering.em.models.DiagonalGaussianModel
- estimateLogDensity(NumberVector) - Method in class elki.clustering.em.models.MultivariateGaussianModel
- estimateLogDensity(NumberVector) - Method in class elki.clustering.em.models.SphericalGaussianModel
- estimateLogDensity(NumberVector) - Method in class elki.clustering.em.models.TextbookMultivariateGaussianModel
- estimateLogDensity(NumberVector) - Method in class elki.clustering.em.models.TextbookSphericalGaussianModel
- estimateLogDensity(NumberVector) - Method in class elki.clustering.em.models.TwoPassMultivariateGaussianModel
- estimateLogDensity(ClusterFeature) - Method in interface elki.clustering.em.models.BetulaClusterModel
-
Estimate the log likelihood of a clustering feature.
- estimateLogDensity(ClusterFeature) - Method in class elki.clustering.em.models.DiagonalGaussianModel
- estimateLogDensity(ClusterFeature) - Method in class elki.clustering.em.models.MultivariateGaussianModel
- estimateLogDensity(ClusterFeature) - Method in class elki.clustering.em.models.SphericalGaussianModel
- estimateLogDensity(O) - Method in interface elki.clustering.em.models.EMClusterModel
-
Estimate the log likelihood of a vector.
- estimateThreshold(CFTree.TreeNode) - Method in class elki.clustering.hierarchical.birch.CFTree
- estimateThreshold(CFNode<L>, ArrayList<L>, double[]) - Method in class elki.index.tree.betula.CFTree
- estimateViewport() - Method in class elki.visualization.projections.AffineProjection
- estimateViewport() - Method in interface elki.visualization.projections.Projection2D
-
Estimate the viewport requirements
- estimateViewport() - Method in class elki.visualization.projections.Simple2D
- estimateY(double) - Method in class elki.math.statistics.PolynomialRegression
-
Performs an estimation of y on the specified x value.
- estimateY(double[][]) - Method in class elki.math.statistics.MultipleLinearRegression
-
Perform an estimation of y on the specified matrix.
- estimator - Variable in class elki.application.statistics.EstimateIntrinsicDimensionality
-
Estimation method.
- estimator - Variable in class elki.outlier.intrinsic.IDOS
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class elki.outlier.intrinsic.IDOS.Par
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class elki.outlier.intrinsic.ISOS
-
Estimator of intrinsic dimensionality.
- estimator - Variable in class elki.outlier.intrinsic.LID
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class elki.outlier.intrinsic.LID.Par
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class elki.projection.IntrinsicNearestNeighborAffinityMatrixBuilder
-
Estimator of intrinsic dimensionality.
- estimator - Variable in class elki.projection.IntrinsicNearestNeighborAffinityMatrixBuilder.Par
-
Estimator of intrinsic dimensionality.
- ESTIMATOR_ID - Static variable in class elki.outlier.intrinsic.IDOS.Par
-
The class used for estimating the intrinsic dimensionality.
- ESTIMATOR_ID - Static variable in class elki.outlier.intrinsic.LID.Par
-
Class to use for estimating the ID.
- ESTIMATOR_ID - Static variable in class elki.projection.IntrinsicNearestNeighborAffinityMatrixBuilder.Par
-
Parameter for ID estimation.
- estimators - Variable in class elki.datasource.filter.normalization.columnwise.AttributeWiseBetaNormalization.Par
-
Stores the distribution estimators
- estimators - Variable in class elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization
-
Stores the distribution estimators
- estimators - Variable in class elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization.Par
-
Stores the distribution estimators
- EU - Static variable in class elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator
-
Euler-Mascheroni constant.
- EUCLIDEAN - elki.application.greedyensemble.GreedyEnsembleExperiment.Distance
- EUCLIDEAN - elki.visualization.visualizers.scatterplot.index.TreeSphereVisualization.Mode
- EUCLIDEAN_KAPPA - Static variable in class elki.visualization.svg.SVGHyperSphere
-
Factor used for approximating circles with cubic beziers.
- EuclideanDistance - Class in elki.distance.minkowski
-
Euclidean distance for
NumberVector
s. - EuclideanDistance() - Constructor for class elki.distance.minkowski.EuclideanDistance
-
Deprecated.Use static instance!
- EuclideanDistance.Par - Class in elki.distance.minkowski
-
Parameterization class.
- EuclideanDistanceCriterion - Class in elki.clustering.hierarchical.birch
-
Distance criterion.
- EuclideanDistanceCriterion() - Constructor for class elki.clustering.hierarchical.birch.EuclideanDistanceCriterion
- EuclideanHashFunctionFamily - Class in elki.index.lsh.hashfamilies
-
2-stable hash function family for Euclidean distances.
- EuclideanHashFunctionFamily(RandomFactory, double, int) - Constructor for class elki.index.lsh.hashfamilies.EuclideanHashFunctionFamily
-
Constructor.
- EuclideanHashFunctionFamily.Par - Class in elki.index.lsh.hashfamilies
-
Parameterization class.
- euclideanLength(double[]) - Static method in class elki.math.linearalgebra.VMath
-
Euclidean length of the vector sqrt(v1T v1).
- EuclideanRStarTreeDistancePrioritySearcher<O extends SpatialComparable> - Class in elki.index.tree.spatial.rstarvariants.query
-
Instance of priority search for a particular spatial index.
- EuclideanRStarTreeDistancePrioritySearcher(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeDistancePrioritySearcher
-
Constructor.
- EuclideanRStarTreeKNNQuery<O extends NumberVector> - Class in elki.index.tree.spatial.rstarvariants.query
-
Instance of a KNN query for a particular spatial index.
- EuclideanRStarTreeKNNQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
-
Constructor.
- EuclideanRStarTreeRangeQuery<O extends NumberVector> - Class in elki.index.tree.spatial.rstarvariants.query
-
Instance of a range query for a particular spatial index.
- EuclideanRStarTreeRangeQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeRangeQuery
-
Constructor.
- EuclideanSphericalElkanKMeans<V extends NumberVector> - Class in elki.clustering.kmeans.spherical
-
Elkan's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.
- EuclideanSphericalElkanKMeans(int, int, KMeansInitialization, boolean) - Constructor for class elki.clustering.kmeans.spherical.EuclideanSphericalElkanKMeans
-
Constructor.
- EuclideanSphericalElkanKMeans.Instance - Class in elki.clustering.kmeans.spherical
-
Inner instance, storing state for a single data set.
- EuclideanSphericalElkanKMeans.Par<V extends NumberVector> - Class in elki.clustering.kmeans.spherical
-
Parameterization class.
- EuclideanSphericalHamerlyKMeans<V extends NumberVector> - Class in elki.clustering.kmeans.spherical
-
A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.
- EuclideanSphericalHamerlyKMeans(int, int, KMeansInitialization, boolean) - Constructor for class elki.clustering.kmeans.spherical.EuclideanSphericalHamerlyKMeans
-
Constructor.
- EuclideanSphericalHamerlyKMeans.Instance - Class in elki.clustering.kmeans.spherical
-
Inner instance, storing state for a single data set.
- EuclideanSphericalHamerlyKMeans.Par<V extends NumberVector> - Class in elki.clustering.kmeans.spherical
-
Parameterization class.
- EuclideanSphericalSimplifiedElkanKMeans<V extends NumberVector> - Class in elki.clustering.kmeans.spherical
-
A spherical k-Means algorithm based on Hamerly's fast k-means by exploiting the triangle inequality in the corresponding Euclidean space.
- EuclideanSphericalSimplifiedElkanKMeans(int, int, KMeansInitialization, boolean) - Constructor for class elki.clustering.kmeans.spherical.EuclideanSphericalSimplifiedElkanKMeans
-
Constructor.
- EuclideanSphericalSimplifiedElkanKMeans.Instance - Class in elki.clustering.kmeans.spherical
-
Inner instance, storing state for a single data set.
- EuclideanSphericalSimplifiedElkanKMeans.Par<V extends NumberVector> - Class in elki.clustering.kmeans.spherical
-
Parameterization class.
- EULERMASCHERONI - Static variable in class elki.math.MathUtil
-
Euler–Mascheroni constant.
- EULERS_CONST - Static variable in class elki.math.statistics.distribution.GammaDistribution
-
Euler–Mascheroni constant
- eval(double, double[]) - Method in interface elki.math.linearalgebra.fitting.FittingFunction
-
Compute value at position x as well as gradients for the parameters
- eval(double, double[]) - Method in class elki.math.linearalgebra.fitting.GaussianFittingFunction
-
Compute the mixture of Gaussians at the given position
- evals - Variable in class elki.gui.multistep.panels.EvaluationTabPanel
-
The data input configured
- evals - Variable in class elki.gui.multistep.panels.OutputTabPanel
-
Algorithm step to run on.
- evalTab - Variable in class elki.gui.multistep.MultiStepGUI
-
Evaluation panel.
- evaluate(DBIDs, DoubleDBIDList) - Method in interface elki.evaluation.scores.ScoreEvaluation
-
Evaluate given a list of positives and a scoring.
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.AUPRCEvaluation
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.AveragePrecisionEvaluation
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.DCGEvaluation
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.MaximumF1Evaluation
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.NDCGEvaluation
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.PrecisionAtKEvaluation
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.PRGCEvaluation
- evaluate(ScoreEvaluation.Adapter) - Method in class elki.evaluation.scores.ROCEvaluation
- evaluate(ScoreEvaluation.Adapter) - Method in interface elki.evaluation.scores.ScoreEvaluation
-
Evaluate a given predicate and iterator.
- evaluate(EvaluationResult, int, int, Supplier<ScoreEvaluation.Adapter>) - Method in class elki.evaluation.outlier.OutlierRankingEvaluation
-
Produce various evaluation statistics
- evaluateBy(ScoreEvaluation) - Method in class elki.result.outlier.OutlierResult
-
Evaluate given a set of positives and a scoring.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.ClusterRadius
-
Evaluate a single clustering.
- evaluateClustering(Relation<? extends NumberVector>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.ConcordantPairsGammaTau
-
Evaluate a single clustering.
- evaluateClustering(Relation<? extends NumberVector>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.DaviesBouldinIndex
-
Evaluate a single clustering.
- evaluateClustering(Relation<? extends NumberVector>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.PBMIndex
-
Evaluate a single clustering.
- evaluateClustering(Relation<? extends NumberVector>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.SimplifiedSilhouette
-
Evaluate a single clustering.
- evaluateClustering(Relation<? extends NumberVector>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.SquaredErrors
-
Evaluate a single clustering.
- evaluateClustering(Relation<? extends NumberVector>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.VarianceRatioCriterion
-
Evaluate a single clustering.
- evaluateClustering(Relation<? extends O>, DistanceQuery<O>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.CIndex
-
Evaluate a single clustering.
- evaluateClustering(Relation<O>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.DBCV
-
Evaluate a single clustering.
- evaluateClustering(Relation<O>, DistanceQuery<O>, Clustering<?>) - Method in class elki.evaluation.clustering.internal.Silhouette
-
Evaluate a single clustering.
- EvaluateClustering - Class in elki.evaluation.clustering
-
Evaluate a clustering result by comparing it to an existing cluster label.
- EvaluateClustering(ClusteringAlgorithm<?>, boolean, boolean) - Constructor for class elki.evaluation.clustering.EvaluateClustering
-
Constructor.
- EvaluateClustering.Par - Class in elki.evaluation.clustering
-
Parameterization class.
- EvaluateClustering.ScoreResult - Class in elki.evaluation.clustering
-
Result object for outlier score judgements.
- evaluateClusters(ArrayList<PROCLUS.PROCLUSCluster>, long[][], Relation<? extends NumberVector>) - Method in class elki.clustering.subspace.PROCLUS
-
Evaluates the quality of the clusters.
- evaluateConstrainedQuadraticFunction(double[][], double[], double, double[], double[], ConstrainedQuadraticProblemSolver.DimensionState[], boolean, double[], double) - Method in class elki.math.linearalgebra.ConstrainedQuadraticProblemSolver
-
Main recursive function.
- evaluateConstrainedQuadraticFunction1D(double, double, double, double, double, double[], double) - Method in class elki.math.linearalgebra.ConstrainedQuadraticProblemSolver
-
Finds the maximum for a 1d constrained quadratic function.
- EvaluateIntrinsicDimensionalityEstimators - Class in elki.application.experiments
-
Class for testing the estimation quality of intrinsic dimensionality estimators.
- EvaluateIntrinsicDimensionalityEstimators(int, int, int, int, EvaluateIntrinsicDimensionalityEstimators.Aggregate, EvaluateIntrinsicDimensionalityEstimators.OutputFormat, RandomFactory) - Constructor for class elki.application.experiments.EvaluateIntrinsicDimensionalityEstimators
-
Constructor.
- EvaluateIntrinsicDimensionalityEstimators.Aggregate - Enum in elki.application.experiments
-
Aggregation methods.
- EvaluateIntrinsicDimensionalityEstimators.OutputFormat - Enum in elki.application.experiments
-
Output format
- EvaluateIntrinsicDimensionalityEstimators.Par - Class in elki.application.experiments
-
Parameterization class.
- evaluateKNN(double[], ModifiableDoubleDBIDList, Relation<?>, Object2IntOpenHashMap<Object>, Object) - Method in class elki.algorithm.statistics.EvaluateRetrievalPerformance.KNNEvaluator
-
Evaluate by simulating kNN classification for k=1...maxk
- evaluateOutlierResult(Database, OutlierResult) - Method in class elki.evaluation.outlier.ComputeOutlierHistogram
-
Evaluate a single outlier result as histogram.
- EvaluatePrecomputedOutlierScores - Class in elki.application.greedyensemble
-
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores
, and compute popular evaluation metrics. - EvaluatePrecomputedOutlierScores(URI, StreamingParser, Pattern, Path, String) - Constructor for class elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
-
Constructor.
- EvaluatePrecomputedOutlierScores.Par - Class in elki.application.greedyensemble
-
Parameterization class.
- evaluateQuadraticFormula(double[][], double[], double, double[]) - Static method in class elki.math.linearalgebra.ConstrainedQuadraticProblemSolver
-
calculate \( \tfrac12 x^T A x + x^t b + c \) for the given values.
- evaluateRanking(ScoreEvaluation, Cluster<?>, DoubleDBIDList) - Static method in class elki.evaluation.clustering.EvaluateClustering
-
Evaluate given a cluster (of positive elements) and a scoring list.
- EvaluateRankingQuality<V extends NumberVector> - Class in elki.algorithm.statistics
-
Evaluate a distance function with respect to kNN queries.
- EvaluateRankingQuality(Distance<? super V>, int) - Constructor for class elki.algorithm.statistics.EvaluateRankingQuality
-
Constructor.
- EvaluateRetrievalPerformance<O> - Class in elki.algorithm.statistics
-
Evaluate a distance functions performance by computing the mean average precision, ROC, and NN classification performance when ranking the objects by distance.
- EvaluateRetrievalPerformance(Distance<? super O>, double, RandomFactory, boolean, int) - Constructor for class elki.algorithm.statistics.EvaluateRetrievalPerformance
-
Constructor.
- EvaluateRetrievalPerformance.KNNEvaluator - Class in elki.algorithm.statistics
-
Evaluate kNN retrieval performance.
- EvaluateRetrievalPerformance.RetrievalPerformanceResult - Class in elki.algorithm.statistics
-
Result object for MAP scores.
- Evaluation(List<? extends Evaluator>, Database) - Constructor for class elki.workflow.EvaluationStep.Evaluation
-
Constructor.
- evaluationName - Variable in class elki.evaluation.classification.ConfusionMatrixEvaluationResult
-
Holds the used EvaluationProcedure.
- EvaluationResult - Class in elki.result
-
Abstract evaluation result.
- EvaluationResult() - Constructor for class elki.result.EvaluationResult
-
Constructor.
- EvaluationResult.Measurement - Class in elki.result
-
Class representing a single measurement.
- EvaluationResult.MeasurementGroup - Class in elki.result
-
A group of evaluation measurements.
- evaluationStep - Variable in class elki.KDDTask
-
The evaluation step.
- evaluationStep - Variable in class elki.KDDTask.Par
- EvaluationStep - Class in elki.workflow
-
The "evaluation" step, where data is analyzed.
- EvaluationStep(List<? extends Evaluator>) - Constructor for class elki.workflow.EvaluationStep
-
Constructor.
- EvaluationStep.Evaluation - Class in elki.workflow
-
Class to handle running the evaluators on a database instance.
- EvaluationStep.Par - Class in elki.workflow
-
Parameterization class.
- EvaluationTabPanel - Class in elki.gui.multistep.panels
-
Panel to handle result evaluation
- EvaluationTabPanel(InputTabPanel, AlgorithmTabPanel) - Constructor for class elki.gui.multistep.panels.EvaluationTabPanel
-
Constructor.
- EvaluationVisualization - Class in elki.visualization.visualizers.visunproj
-
Pseudo-Visualizer, that lists the cluster evaluation results found.
- EvaluationVisualization() - Constructor for class elki.visualization.visualizers.visunproj.EvaluationVisualization
-
Constructor.
- Evaluator - Interface in elki.evaluation
-
Interface for post-algorithm evaluations, such as histograms, outlier score evaluations, ...
- EVALUATOR_ID - Static variable in class elki.workflow.EvaluationStep.Par
-
Parameter ID to specify the evaluators to run.
- evaluators - Variable in class elki.workflow.EvaluationStep.Evaluation
-
Evaluators to run.
- evaluators - Variable in class elki.workflow.EvaluationStep
-
Evaluators to run.
- evaluators - Variable in class elki.workflow.EvaluationStep.Par
-
Evaluators to run
- evaluteResult(Database, Clustering<?>, Clustering<?>) - Method in class elki.evaluation.clustering.EvaluateClustering
-
Evaluate a clustering result.
- Event() - Constructor for enum elki.datasource.bundle.BundleStreamSource.Event
- eventarea - Variable in class elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
Sensitive (clickable) area
- eventManager - Variable in class elki.database.AbstractDatabase
-
The event manager, collects events and fires them on demand.
- EvolutionarySearch(Relation<? extends NumberVector>, ArrayList<ArrayList<DBIDs>>, Random) - Constructor for class elki.outlier.subspace.AggarwalYuEvolutionary.EvolutionarySearch
-
Constructor.
- EVT_DBLCLICK_DELAY - Static variable in class elki.visualization.visualizers.pairsegments.CircleSegmentsVisualizer.Instance.SegmentListenerProxy
-
Mouse double click time window in milliseconds
- ewma - Variable in class elki.timeseries.SigniTrendChangeDetection.Instance
-
Moving average and variance.
- ewmv - Variable in class elki.timeseries.SigniTrendChangeDetection.Instance
-
Moving average and variance.
- exact - Variable in class elki.algorithm.statistics.DistanceStatisticsWithClasses
-
Compute exactly (slower).
- exact - Variable in class elki.database.query.ExactPrioritySearcher
-
Refined candidates.
- EXACT_ASSIGN_ID - Static variable in class elki.clustering.em.KDTreeEM.Par
-
Parameter to produce more precise final assignments
- exactAssign - Variable in class elki.clustering.em.KDTreeEM
-
Perform exact cluster assignments
- exactAssign - Variable in class elki.clustering.em.KDTreeEM.Par
-
Perform the slower exact assignment step.
- exactMinMax(Relation<O>, DistanceQuery<O>) - Method in class elki.algorithm.statistics.DistanceStatisticsWithClasses
-
Compute the exact maximum and minimum.
- exactOnly() - Method in class elki.database.query.QueryBuilder
-
Only accept exact methods, no approximate methods.
- ExactPrioritySearcher<O> - Class in elki.database.query
-
Priority searcher that refines all objects to their exact distances, using another priority searcher inside to provide candidates.
- ExactPrioritySearcher(PrioritySearcher<O>) - Constructor for class elki.database.query.ExactPrioritySearcher
-
Constructor.
- exception(CharSequence, Throwable) - Method in class elki.logging.Logging
-
Log a message with exception at the 'severe' level.
- exception(String, Throwable) - Static method in class elki.logging.LoggingUtil
-
Static version to log a severe exception.
- exception(Throwable) - Method in class elki.logging.Logging
-
Log an exception at the 'severe' level.
- exception(Throwable) - Static method in class elki.logging.LoggingUtil
-
Static version to log a severe exception.
- excessOfMass() - Method in class elki.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction.TempCluster
-
Excess of mass measure.
- excludeNotCovered(ModifiableDoubleDBIDList, double, ModifiableDoubleDBIDList) - Method in class elki.index.tree.metrical.covertree.AbstractCoverTree
-
Retain all elements within the current cover.
- execute() - Method in class elki.gui.multistep.panels.ParameterTabPanel
-
Execute the task.
- executed - Variable in class elki.gui.multistep.panels.InputTabPanel
-
Signal when an database input has been executed.
- executeResize(double) - Method in class elki.visualization.batikutil.LazyCanvasResizer
-
Callback function that needs to be overridden with actual implementations.
- executeStep() - Method in class elki.gui.multistep.panels.AlgorithmTabPanel
- executeStep() - Method in class elki.gui.multistep.panels.EvaluationTabPanel
- executeStep() - Method in class elki.gui.multistep.panels.InputTabPanel
- executeStep() - Method in class elki.gui.multistep.panels.LoggingTabPanel
- executeStep() - Method in class elki.gui.multistep.panels.OutputTabPanel
- executeStep() - Method in class elki.gui.multistep.panels.ParameterTabPanel
-
Execute the configured step.
- executor - Variable in class elki.parallel.ParallelCore
-
Executor service.
- Executor - Interface in elki.parallel
-
Processor executor.
- existed - Variable in class elki.persistent.OnDiskArrayPageFile
-
Whether or not the file originally existed
- existed - Variable in class elki.persistent.PersistentPageFile
-
Whether we are initializing from an existing file.
- existing - Variable in class elki.data.ClassLabel.Factory
-
Set for reusing the same objects.
- existing - Variable in class elki.database.relation.ConvertToStringView
-
The database we use
- exists(URI) - Static method in class elki.utilities.io.FileUtil
-
Check if the file/resource identified by an URI exists.
- exp - Variable in class elki.result.EvaluationResult.Measurement
-
Observed value, minimum, maximum, expected value.
- exp(double) - Static method in class elki.math.MathUtil
-
Delegate to FastMath.exp.
- expandCluster(int, WritableIntegerDataStore, KNNSearcher<DBIDRef>, DBIDs, double, FiniteProgress) - Method in class elki.clustering.dbscan.LSDBC
-
Set-based expand cluster implementation.
- expandCluster(DBIDRef, int, WritableIntegerDataStore, ModifiableDoubleDBIDList, ArrayModifiableDBIDs, RangeSearcher<DBIDRef>, FiniteProgress) - Method in class elki.clustering.dbscan.GriDBSCAN.Instance
-
Set-based expand cluster implementation.
- expandCluster(DBIDRef, int, WritableIntegerDataStore, T, ArrayModifiableDBIDs, FiniteProgress) - Method in class elki.clustering.dbscan.GeneralizedDBSCAN.Instance
-
Set-based expand cluster implementation.
- expandCluster(DBIDRef, ArrayModifiableDBIDs) - Method in class elki.clustering.dbscan.DBSCAN.Instance
-
DBSCAN-function expandCluster.
- expandCluster(SimilarityQuery<O>, DBIDRef, FiniteProgress, IndefiniteProgress) - Method in class elki.clustering.SNNClustering
-
DBSCAN-function expandCluster adapted to SNN criterion.
- expandClusterOrder(DBIDRef) - Method in class elki.clustering.optics.OPTICSHeap.Instance
-
OPTICS-function expandClusterOrder.
- expandClusterOrder(DBIDRef) - Method in class elki.clustering.optics.OPTICSList.Instance
-
OPTICS-function expandClusterOrder.
- expandClusterOrder(DBID, ClusterOrder, DistanceQuery<V>, FiniteProgress) - Method in class elki.clustering.optics.FastOPTICS
-
OPTICS algorithm for processing a point, but with different density estimates
- expandDBID(DBIDRef) - Method in class elki.clustering.correlation.HiCO.Instance
- expandDBID(DBIDRef) - Method in class elki.clustering.optics.GeneralizedOPTICS.Instance
-
Add the current DBID to the cluster order, and expand its neighbors if minPts and similar conditions are satisfied.
- expandDBID(DBIDRef) - Method in class elki.clustering.subspace.DiSH.Instance
- expandDBID(DBIDRef) - Method in class elki.clustering.subspace.HiSC.Instance
- expandDirNodes(DeLiCluNode, DeLiCluNode) - Method in class elki.clustering.optics.DeLiClu
-
Expands the specified directory nodes.
- expanded - Variable in class elki.index.tree.spatial.rstarvariants.deliclu.DeLiCluTree
-
Holds the ids of the expanded nodes.
- expandLeafNodes(DeLiCluNode, DeLiCluNode, DataStore<KNNList>) - Method in class elki.clustering.optics.DeLiClu
-
Expands the specified leaf nodes.
- expandNewSolution(double[], double[], int, double) - Method in class elki.math.linearalgebra.ConstrainedQuadraticProblemSolver
-
Expands the redRes to a problem with dim+1 and saves it into result
- expandNode(O, KNNHeap, DoubleIntegerMinHeap, double, int) - Method in class elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
- expandNode(O, KNNHeap, DoubleIntegerMinHeap, double, int) - Method in class elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNSearcher
- expandNodes(DeLiCluTree, DeLiClu.SpatialObjectPair, DataStore<KNNList>) - Method in class elki.clustering.optics.DeLiClu
-
Expands the spatial nodes of the specified pair.
- expansion - Variable in class elki.index.tree.metrical.covertree.AbstractCoverTree
-
Constant expansion rate. 2 would be the intuitive value, but the original version used 1.3, so we copy this.
- expansion - Variable in class elki.index.tree.metrical.covertree.AbstractCoverTree.Factory
-
Constant expansion rate. 2 would be the intuitive value, but the original version used 1.3, so we copy this.
- expansion - Variable in class elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Par
-
Expansion rate.
- EXPANSION_ID - Static variable in class elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Par
-
Expansion rate of the tree (going upward).
- expect - Variable in class elki.outlier.COP
-
Expected amount of outliers.
- expect - Variable in class elki.outlier.COP.Par
-
Expected amount of outliers.
- expect - Variable in class elki.outlier.trivial.TrivialGeneratedOutlier
-
Expected share of outliers.
- expect - Variable in class elki.outlier.trivial.TrivialGeneratedOutlier.Par
-
Expected share of outliers
- EXPECT_ID - Static variable in class elki.outlier.COP.Par
-
Expected share of outliers.
- EXPECT_ID - Static variable in class elki.outlier.trivial.TrivialGeneratedOutlier.Par
-
Expected share of outliers
- expected(int, int) - Method in class elki.evaluation.scores.AUPRCEvaluation
- expected(int, int) - Method in class elki.evaluation.scores.AveragePrecisionEvaluation
- expected(int, int) - Method in class elki.evaluation.scores.DCGEvaluation
- expected(int, int) - Method in class elki.evaluation.scores.MaximumF1Evaluation
- expected(int, int) - Method in class elki.evaluation.scores.NDCGEvaluation
- expected(int, int) - Method in class elki.evaluation.scores.PrecisionAtKEvaluation
- expected(int, int) - Method in class elki.evaluation.scores.PRGCEvaluation
- expected(int, int) - Method in class elki.evaluation.scores.ROCEvaluation
- expected(int, int) - Method in interface elki.evaluation.scores.ScoreEvaluation
-
Expected score for a random result.
- expectedMutualInformation - Variable in class elki.evaluation.clustering.Entropy
-
Expected mutual information
- expectedMutualInformation() - Method in class elki.evaluation.clustering.Entropy
-
Get the expected mutual information.
- ExpGammaDistribution - Class in elki.math.statistics.distribution
-
Exp-Gamma Distribution, with random generation and density functions.
- ExpGammaDistribution(double, double, double) - Constructor for class elki.math.statistics.distribution.ExpGammaDistribution
-
Constructor for Gamma distribution.
- ExpGammaDistribution.Par - Class in elki.math.statistics.distribution
-
Parameterization class
- ExpGammaExpMOMEstimator - Class in elki.math.statistics.distribution.estimator
-
Simple parameter estimation for the ExpGamma distribution.
- ExpGammaExpMOMEstimator() - Constructor for class elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
-
Private constructor.
- ExpGammaExpMOMEstimator.Par - Class in elki.math.statistics.distribution.estimator
-
Parameterization class.
- expirePage(P) - Method in class elki.persistent.LRUCache
-
Write page through to disk.
- explain - Variable in class elki.math.linearalgebra.pca.AutotuningPCA.Cand
-
Score
- explainedVariance - Variable in class elki.math.linearalgebra.pca.PCAFilteredResult
-
The amount of Variance explained by strong Eigenvalues
- EXPLORE - elki.visualization.parallel3d.OpenGL3DParallelCoordinates.Instance.State
- EXPONENT_OVERFLOW - Static variable in class elki.utilities.io.ParseUtil
-
Preallocated exceptions.
- ExponentialDistribution - Class in elki.math.statistics.distribution
-
Exponential distribution.
- ExponentialDistribution(double) - Constructor for class elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, double) - Constructor for class elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution.Par - Class in elki.math.statistics.distribution
-
Parameterization class
- ExponentialIntGenerator - Class in elki.utilities.datastructures.range
-
Generate an exponential range.
- ExponentialIntGenerator(int, int, int) - Constructor for class elki.utilities.datastructures.range.ExponentialIntGenerator
-
Constructor.
- ExponentialLMMEstimator - Class in elki.math.statistics.distribution.estimator
-
Estimate the parameters of a Gamma Distribution, using the methods of L-Moments (LMM).
- ExponentialLMMEstimator() - Constructor for class elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
-
Constructor.
- ExponentialLMMEstimator.Par - Class in elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentiallyModifiedGaussianDistribution - Class in elki.math.statistics.distribution
-
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution) is a combination of a normal distribution and an exponential distribution.
- ExponentiallyModifiedGaussianDistribution(double, double, double) - Constructor for class elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
-
Constructor for ExGaussian distribution
- ExponentiallyModifiedGaussianDistribution.Par - Class in elki.math.statistics.distribution
-
Parameterization class
- ExponentialMADEstimator - Class in elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using Median and MAD.
- ExponentialMADEstimator() - Constructor for class elki.math.statistics.distribution.estimator.ExponentialMADEstimator
-
Private constructor, use static instance!
- ExponentialMADEstimator.Par - Class in elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialMedianEstimator - Class in elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using Median and MAD.
- ExponentialMedianEstimator() - Constructor for class elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
-
Private constructor, use static instance!
- ExponentialMedianEstimator.Par - Class in elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialMOMEstimator - Class in elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using the mean, which is the maximum-likelihood estimate (MLE), but not very robust.
- ExponentialMOMEstimator() - Constructor for class elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
-
Private constructor, use static instance!
- ExponentialMOMEstimator.Par - Class in elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialStddevWeight - Class in elki.math.linearalgebra.pca.weightfunctions
-
Exponential Weight function, scaled using the standard deviation using: \( \sigma \exp(-\frac{1}{2} \frac{\text{distance}}{\sigma}) \).
- ExponentialStddevWeight() - Constructor for class elki.math.linearalgebra.pca.weightfunctions.ExponentialStddevWeight
- ExponentialWeight - Class in elki.math.linearalgebra.pca.weightfunctions
-
Exponential Weight function, scaled such that the result it 0.1 at distance equal max, so it does not completely disappear using: \( \exp(-2.3025850929940455 \frac{\text{distance}}{\max}) \)
- ExponentialWeight() - Constructor for class elki.math.linearalgebra.pca.weightfunctions.ExponentialWeight
- EXPONENTS_ID - Static variable in class tutorial.distancefunction.MultiLPNorm.Par
-
Option ID for the exponents
- ExponionKMeans<V extends NumberVector> - Class in elki.clustering.kmeans
-
Newlings's Exponion k-means algorithm, exploiting the triangle inequality.
- ExponionKMeans(NumberVectorDistance<? super V>, int, int, KMeansInitialization, boolean) - Constructor for class elki.clustering.kmeans.ExponionKMeans
-
Constructor.
- ExponionKMeans.Instance - Class in elki.clustering.kmeans
-
Inner instance, storing state for a single data set.
- ExponionKMeans.Par<V extends NumberVector> - Class in elki.clustering.kmeans
-
Parameterization class.
- exportItem - Variable in class elki.visualization.gui.ResultWindow.DynamicMenu
-
The "Export Image" button, to save the image
- ExportVisualizations - Class in elki.result
-
Class that automatically generates all visualizations and exports them into SVG files.
- ExportVisualizations(Path, VisualizerParameterizer, double, ExportVisualizations.Format) - Constructor for class elki.result.ExportVisualizations
-
Constructor.
- ExportVisualizations(Path, VisualizerParameterizer, double, ExportVisualizations.Format, int) - Constructor for class elki.result.ExportVisualizations
-
Constructor.
- ExportVisualizations.Format - Enum in elki.result
-
File format
- ExportVisualizations.Par - Class in elki.result
-
Parameterization class
- expungeStaleEntries() - Static method in class elki.result.Metadata
-
Expunges stale entries from the table.
- extend(A, ArrayAdapter<T, A>, T) - Static method in class elki.utilities.datastructures.arraylike.ExtendedArray
-
Static wrapper that has a nicer generics signature.
- extend(SpatialComparable) - Method in class elki.data.ModifiableHyperBoundingBox
-
Extend the bounding box by some other spatial object.
- ExtendedArray<T> - Class in elki.utilities.datastructures.arraylike
-
Class to extend an array with a single element virtually.
- ExtendedArray(Object, ArrayAdapter<T, Object>, T) - Constructor for class elki.utilities.datastructures.arraylike.ExtendedArray
-
Constructor.
- ExtendedNeighborhood - Class in elki.outlier.spatial.neighborhood
-
Neighborhood obtained by computing the k-fold closure of an existing neighborhood.
- ExtendedNeighborhood(DataStore<DBIDs>) - Constructor for class elki.outlier.spatial.neighborhood.ExtendedNeighborhood
-
Constructor.
- ExtendedNeighborhood.Factory<O> - Class in elki.outlier.spatial.neighborhood
-
Factory class.
- ExtendedNeighborhood.Factory.Par<O> - Class in elki.outlier.spatial.neighborhood
-
Parameterization class.
- extendMBR(SpatialComparable) - Method in class elki.index.tree.spatial.SpatialDirectoryEntry
-
Extend the MBR of this node.
- extendNeighborhood(Database, Relation<? extends O>) - Method in class elki.outlier.spatial.neighborhood.ExtendedNeighborhood.Factory
-
Method to load the external neighbors.
- EXTENSION - Static variable in class elki.result.textwriter.MultipleFilesOutput
-
File name extension.
- ExternalClustering - Class in elki.clustering.meta
-
Read an external clustering result from a file, such as produced by
ClusteringVectorDumper
. - ExternalClustering(URI) - Constructor for class elki.clustering.meta.ExternalClustering
-
Constructor.
- ExternalClustering.Par - Class in elki.clustering.meta
-
Parameterization class
- ExternalDoubleOutlierScore - Class in elki.outlier.meta
-
External outlier detection scores, loading outlier scores from an external file.
- ExternalDoubleOutlierScore(URI, Pattern, Pattern, boolean, ScalingFunction) - Constructor for class elki.outlier.meta.ExternalDoubleOutlierScore
-
Constructor.
- ExternalDoubleOutlierScore.Par - Class in elki.outlier.meta
-
Parameterization class
- ExternalID - Class in elki.data
-
External ID objects.
- ExternalID(String) - Constructor for class elki.data.ExternalID
-
Constructor.
- EXTERNALID - Static variable in class elki.data.type.TypeUtil
-
External ID type.
- EXTERNALID_INDEX_ID - Static variable in class elki.datasource.filter.typeconversions.ExternalIDFilter.Par
-
Parameter that specifies the index of the label to be used as external Id, starting at 0.
- ExternalIDFilter - Class in elki.datasource.filter.typeconversions
-
Class that turns a label column into an external ID column.
- ExternalIDFilter(int) - Constructor for class elki.datasource.filter.typeconversions.ExternalIDFilter
-
Constructor.
- ExternalIDFilter.Par - Class in elki.datasource.filter.typeconversions
-
Parameterization class.
- externalIdIndex - Variable in class elki.datasource.filter.typeconversions.ExternalIDFilter
-
The index of the label to be used as external Id.
- externalIdIndex - Variable in class elki.datasource.filter.typeconversions.ExternalIDFilter.Par
- ExternalIDJoinDatabaseConnection - Class in elki.datasource
-
Joins multiple data sources by their label
- ExternalIDJoinDatabaseConnection(List<? extends ObjectFilter>, List<? extends DatabaseConnection>) - Constructor for class elki.datasource.ExternalIDJoinDatabaseConnection
-
Constructor.
- ExternalIDJoinDatabaseConnection.Par - Class in elki.datasource
-
Parameterization class.
- ExternalizablePage - Interface in elki.persistent
-
Base interface for externalizable pages.
- ExternalNeighborhood - Class in elki.outlier.spatial.neighborhood
-
A precomputed neighborhood, loaded from an external file.
- ExternalNeighborhood(DataStore<DBIDs>) - Constructor for class elki.outlier.spatial.neighborhood.ExternalNeighborhood
-
Constructor.
- ExternalNeighborhood.Factory - Class in elki.outlier.spatial.neighborhood
-
Factory class.
- ExternalNeighborhood.Factory.Par - Class in elki.outlier.spatial.neighborhood
-
Parameterization class.
- extra - Variable in class elki.result.Metadata.Hierarchy.ItrAnc
-
Additional object to return as first result.
- extra - Variable in class elki.result.Metadata.Hierarchy.ItrDesc
-
Additional object to return as first result.
- extra - Variable in class elki.utilities.datastructures.arraylike.ExtendedArray
-
The extra element
- extra - Variable in class elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrAnc
-
Additional object to return as first result.
- extra - Variable in class elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrDesc
-
Additional object to return as first result.
- EXTRA_INTEGRITY_CHECKS - Static variable in class elki.index.tree.metrical.mtreevariants.AbstractMTree
-
Debugging flag: do extra integrity checks.
- EXTRA_INTEGRITY_CHECKS - Static variable in class elki.index.tree.spatial.rstarvariants.AbstractRStarTree
-
Development flag: This will enable some extra integrity checks on the tree.
- extract(int, int, int, boolean, FPGrowth.FPTree.Collector) - Method in class elki.itemsetmining.FPGrowth.FPTree
-
Extract itemsets ending in the given item.
- extract(int, int, int, int, int[], int, int[], int[], boolean, FPGrowth.FPTree.Collector) - Method in class elki.itemsetmining.FPGrowth.FPTree
-
Extract itemsets ending in the given item.
- extractClusters() - Method in class elki.clustering.hierarchical.extraction.AbstractCutDendrogram.Instance
-
Extract all clusters from the pi-lambda-representation.
- extractClusters(ClusterOrder, double, int) - Method in class elki.clustering.optics.OPTICSXi
-
Extract clusters from a cluster order result.
- extractClusters(Relation<? extends NumberVector>, DiSH.DiSHClusterOrder) - Method in class elki.clustering.subspace.DiSH
-
Extracts the clusters from the cluster order.
- extractCorrelationClusters(Clustering<Model>, Relation<? extends NumberVector>, int, ERiCNeighborPredicate.Instance) - Method in class elki.clustering.correlation.ERiC
-
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.
- extractItemsets(DBIDs[], int, int, List<Itemset>) - Method in class elki.itemsetmining.Eclat
- extractItemsets(DBIDs, DBIDs[], int[], int, int, int, List<Itemset>) - Method in class elki.itemsetmining.Eclat
- extractLinear(int, int, int, int, int[], int, int[], FPGrowth.FPTree.Collector) - Method in class elki.itemsetmining.FPGrowth.FPTree
-
Extract itemsets from a linear tree.
- extremum_alpha_n(int, double[]) - Method in class elki.clustering.correlation.cash.ParameterizationFunction
-
Determines the value for alpha_n where this function has a (local) extremum.
- extremumType - Variable in class elki.clustering.correlation.cash.ParameterizationFunction
-
Holds the type of the global extremum.
- extremumType(int, double[], HyperBoundingBox) - Method in class elki.clustering.correlation.cash.ParameterizationFunction
-
Returns the type of the extremum at the specified alpha values.
- ExtremumType() - Constructor for enum elki.clustering.correlation.cash.ParameterizationFunction.ExtremumType
All Classes All Packages