Uses of Interface
elki.database.relation.Relation
-
Packages that use Relation Package Description elki.algorithm Miscellaneous algorithms.elki.algorithm.statistics Statistical analysis algorithms.elki.application.benchmark Benchmarking pseudo algorithms.elki.application.greedyensemble Greedy ensembles for outlier detection.elki.classification Classification algorithms.elki.clustering Clustering algorithms.elki.clustering.affinitypropagation Affinity Propagation (AP) clustering.elki.clustering.biclustering Biclustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.correlation.cash Helper classes for theCASH
algorithm.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.dbscan.predicates Neighbor and core predicated for Generalized DBSCAN.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.em.models elki.clustering.hierarchical Hierarchical agglomerative clustering (HAC).elki.clustering.hierarchical.birch BIRCH clustering.elki.clustering.kcenter K-center clustering.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.kmedoids.initialization elki.clustering.meta Meta clustering algorithms, that get their result from other clusterings or external sources.elki.clustering.onedimensional Clustering algorithms for one-dimensional data.elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.silhouette Silhouette clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.svm elki.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings.elki.clustering.uncertain Clustering algorithms for uncertain data.elki.data Basic classes for different data types, database object types and label types.elki.data.model Cluster models classes for various algorithms.elki.database ELKI database layer - loading, storing, indexing and accessing data.elki.database.query Database queries - computing distances, neighbors, similarities - API and general documentation.elki.database.query.distance Prepared queries for distances.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries.elki.database.query.range Prepared queries for ε-range queries, that return all objects within the radius ε.elki.database.query.rknn Prepared queries for reverse k nearest neighbor (rkNN) queries.elki.database.query.similarity Prepared queries for similarity functions.elki.database.relation Relations, materialized and virtual (views).elki.distance Distance functions for use within ELKI.elki.distance.adapter Distance functions deriving distances from, e.g., similarity measures.elki.distance.external Distance functions using external data sources.elki.distance.probabilistic Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence, F-divergence, χ²-divergence, etc.elki.distance.set Distance functions for binary and set type data.elki.distance.subspace Distance functions based on subspaces.elki.evaluation.clustering.internal Internal evaluation measures for clusterings.elki.evaluation.similaritymatrix Render a distance matrix to visualize a clustering-distance-combination.elki.index Index structure implementations.elki.index.distancematrix Precomputed distance matrix.elki.index.idistance iDistance is a distance based indexing technique, using a reference points embedding.elki.index.invertedlist Indexes using inverted lists.elki.index.laesa Linear Approximating and Eliminating Search Algorithm (LAESA).elki.index.lsh Locality Sensitive Hashing.elki.index.lsh.hashfamilies Hash function families for LSH.elki.index.preprocessed.fastoptics Preprocessed index used by the FastOPTICS algorithm.elki.index.preprocessed.knn Indexes providing KNN and rKNN data.elki.index.preprocessed.snn Indexes providing nearest neighbor sets.elki.index.projected Projected indexes for data.elki.index.tree.betula BETULA clustering by aggregating the data into cluster features.elki.index.tree.metrical.covertree Cover-tree variations.elki.index.tree.metrical.mtreevariants.mktrees Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries.elki.index.tree.metrical.mtreevariants.mktrees.mkapp elki.index.tree.metrical.mtreevariants.mktrees.mkcop elki.index.tree.metrical.mtreevariants.mktrees.mkmax elki.index.tree.metrical.mtreevariants.mktrees.mktab elki.index.tree.metrical.mtreevariants.mtree elki.index.tree.metrical.vptree elki.index.tree.spatial.kd K-d-tree and variants.elki.index.tree.spatial.kd.split elki.index.tree.spatial.rstarvariants.deliclu elki.index.tree.spatial.rstarvariants.flat elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries.elki.index.tree.spatial.rstarvariants.rdknn elki.index.tree.spatial.rstarvariants.rstar elki.index.vafile Vector Approximation File.elki.itemsetmining Algorithms for frequent itemset mining such as APRIORI.elki.math Mathematical operations and utilities used throughout the framework.elki.math.linearalgebra The linear algebra package provides classes and computational methods for operations on matrices and vectors.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and eigenvector processing.elki.math.scales Scales handling for plotting.elki.math.spacefillingcurves Space filling curves.elki.math.statistics.intrinsicdimensionality Methods for estimating the intrinsic dimensionality.elki.outlier Outlier detection algorithms.elki.outlier.anglebased Angle-based outlier detection algorithms.elki.outlier.clustering Clustering based outlier detection.elki.outlier.density Density-based outlier detection algorithms.elki.outlier.distance Distance-based outlier detection algorithms, such as DBOutlier and kNN.elki.outlier.distance.parallel Parallel implementations of distance-based outlier detectors.elki.outlier.intrinsic Outlier detection algorithms based on intrinsic dimensionality.elki.outlier.lof LOF family of outlier detection algorithms.elki.outlier.lof.parallel Parallelized variants of LOF.elki.outlier.meta Meta outlier detection algorithms: external scores, score rescaling.elki.outlier.spatial Spatial outlier detection algorithms.elki.outlier.spatial.neighborhood Spatial outlier neighborhood classes.elki.outlier.spatial.neighborhood.weighted Weighted neighborhood definitions.elki.outlier.subspace Subspace outlier detection methods.elki.outlier.svm Support-Vector-Machines for outlier detection.elki.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers.elki.projection Data projections (see also preprocessing filters for basic projections).elki.result Result types, representation and handling.elki.result.textwriter Text serialization (CSV, Gnuplot, Console, ...).elki.similarity Similarity functions.elki.similarity.cluster Similarity measures for comparing clusters.elki.similarity.kernel Kernel functions.elki.timeseries Algorithms for change point detection in time series.elki.utilities.referencepoints Package containing strategies to obtain reference points.elki.visualization Visualization package of ELKI.elki.visualization.parallel3d 3DPC: 3D parallel coordinate plot visualization for ELKI.elki.visualization.parallel3d.layout Layouting algorithms for 3D parallel coordinate plots.elki.visualization.projector Projectors are responsible for finding appropriate projections for data relations.elki.visualization.visualizers.histogram Visualizers based on 1D projected histograms.elki.visualization.visualizers.parallel Visualizers based on parallel coordinates.elki.visualization.visualizers.scatterplot Visualizers based on scatterplots.elki.visualization.visualizers.scatterplot.index Visualizers for index structures based on 2D projections.elki.visualization.visualizers.scatterplot.outlier Visualizers for outlier scores based on 2D projections.elki.visualization.visualizers.scatterplot.uncertain Visualizers for uncertain data.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation.tutorial.outlier Tutorials on implementing outlier detection methods in ELKI. -
-
Uses of Relation in elki.algorithm
Methods in elki.algorithm that return Relation Modifier and Type Method Description Relation<KNNList>
KNNJoin. autorun(Database database)
Relation<KNNList>
KNNJoin. run(Relation<? extends SpatialComparable> relation)
Joins in the given spatial database to each object its k-nearest neighbors.Methods in elki.algorithm with parameters of type Relation Modifier and Type Method Description CorrelationAnalysisSolution
DependencyDerivator. generateModel(Relation<V> db, DBIDs ids)
Runs the pca on the given set of IDs.CorrelationAnalysisSolution
DependencyDerivator. generateModel(Relation<V> relation, DBIDs ids, double[] centroid)
Runs the pca on the given set of IDs and for the given centroid.CorrelationAnalysisSolution
DependencyDerivator. run(Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the given database based on a linear correlation PCA.KNNDistancesSampler.KNNDistanceOrderResult
KNNDistancesSampler. run(Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified database.Relation<KNNList>
KNNJoin. run(Relation<? extends SpatialComparable> relation)
Joins in the given spatial database to each object its k-nearest neighbors.WritableDataStore<KNNList>
KNNJoin. run(Relation<? extends SpatialComparable> relation, DBIDs ids)
Inner run method. -
Uses of Relation in elki.algorithm.statistics
Methods in elki.algorithm.statistics with parameters of type Relation Modifier and Type Method Description private void
EvaluateRetrievalPerformance. computeDistances(ModifiableDoubleDBIDList nlist, DBIDIter query, DistanceQuery<O> distQuery, Relation<O> relation)
Compute the distances to the neighbor objects.protected double
HopkinsStatisticClusteringTendency. computeNNForRealData(KNNSearcher<DBIDRef> knnQuery, Relation<NumberVector> relation, int dim)
Search nearest neighbors for real data members.void
EvaluateRetrievalPerformance.KNNEvaluator. evaluateKNN(double[] knnperf, ModifiableDoubleDBIDList nlist, Relation<?> lrelation, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<java.lang.Object> counters, java.lang.Object label)
Evaluate by simulating kNN classification for k=1...maxkprivate DoubleMinMax
DistanceStatisticsWithClasses. exactMinMax(Relation<O> relation, DistanceQuery<O> distance)
Compute the exact maximum and minimum.private void
EvaluateRetrievalPerformance. findMatches(ModifiableDBIDs posn, Relation<?> lrelation, java.lang.Object label)
Find all matching objects.protected void
HopkinsStatisticClusteringTendency. initializeDataExtends(Relation<NumberVector> relation, int dim, double[] min, double[] extend)
Initialize the uniform sampling area.private ScalesResult
AddSingleScale. run(Relation<? extends NumberVector> rel)
Add scales to a single vector relation.private ScalesResult
AddUniformScale. run(Relation<? extends NumberVector> rel)
Add scales to a single vector relation.CollectionResult<double[]>
AveragePrecisionAtK. run(Relation<O> relation, Relation<?> lrelation)
Run the algorithmCollectionResult<double[]>
DistanceQuantileSampler. run(Relation<O> relation)
Run the distance quantile sampler.HistogramResult
DistanceStatisticsWithClasses. run(Database database, Relation<O> relation)
HistogramResult
EvaluateRankingQuality. run(Database database, Relation<V> relation)
Run the algorithm.EvaluateRetrievalPerformance.RetrievalPerformanceResult
EvaluateRetrievalPerformance. run(Relation<O> relation, Relation<?> lrelation)
Run the algorithmjava.lang.Double
HopkinsStatisticClusteringTendency. run(Relation<NumberVector> relation)
Compute the Hopkins statistic for a vector relation.HistogramResult
RankingQualityHistogram. run(Database database, Relation<O> relation)
Process a relationprivate DoubleMinMax
DistanceStatisticsWithClasses. sampleMinMax(Relation<O> relation, DistanceQuery<O> distance)
Estimate minimum and maximum via sampling. -
Uses of Relation in elki.application.benchmark
Methods in elki.application.benchmark with parameters of type Relation Modifier and Type Method Description private int
KNNBenchmark. run(KNNSearcher<DBIDRef> knnQuery, Relation<O> relation, Duration dur, MeanVariance mv, MeanVariance mvdist)
Run with the database as query sourceprivate int
PrioritySearchBenchmark. run(PrioritySearcher<DBIDRef> priQuery, Relation<O> relation, Duration dur, MeanVariance mv, MeanVariance mvdist)
Run with the database as query sourceprotected int
RangeQueryBenchmark. run(RangeSearcher<DBIDRef> rangeQuery, Relation<O> relation, double radius, Duration dur, MeanVariance mv)
Run the algorithm, with constant radiusprotected int
RangeQueryBenchmark. run(RangeSearcher<DBIDRef> rangeQuery, Relation<O> relation, Relation<NumberVector> radrel, Duration dur, MeanVariance mv)
Run the algorithm, with separate radius relationprotected int
RangeQueryBenchmark. run(RangeSearcher<O> rangeQuery, Relation<O> relation, DatabaseConnection queries, Duration dur, MeanVariance mv)
Run the algorithm, with a separate query set. -
Uses of Relation in elki.application.greedyensemble
Methods in elki.application.greedyensemble that return Relation Modifier and Type Method Description static Relation<NumberVector>
GreedyEnsembleExperiment. applyPrescaling(ScalingFunction scaling, Relation<NumberVector> relation, DBIDs skip)
Prescale each vector (except when inskip
) with the given scaling function.Methods in elki.application.greedyensemble with parameters of type Relation Modifier and Type Method Description static Relation<NumberVector>
GreedyEnsembleExperiment. applyPrescaling(ScalingFunction scaling, Relation<NumberVector> relation, DBIDs skip)
Prescale each vector (except when inskip
) with the given scaling function. -
Uses of Relation in elki.classification
Fields in elki.classification declared as Relation Modifier and Type Field Description protected Relation<? extends ClassLabel>
KNNClassifier. labelrep
Class label representation.Methods in elki.classification with parameters of type Relation Modifier and Type Method Description void
Classifier. buildClassifier(Database database, Relation<? extends ClassLabel> classLabels)
Performs the training.void
KNNClassifier. buildClassifier(Database database, Relation<? extends ClassLabel> labels)
void
PriorProbabilityClassifier. buildClassifier(Database database, Relation<? extends ClassLabel> labelrep)
Learns the prior probability for all classes. -
Uses of Relation in elki.clustering
Methods in elki.clustering with parameters of type Relation Modifier and Type Method Description Clustering<MeanModel>
BetulaLeafPreClustering. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<PrototypeModel<O>>
CanopyPreClustering. run(Relation<O> relation)
Run the canopy clustering algorithmClustering<SimplePrototypeModel<DBID>>
CFSFDP. run(Relation<O> relation)
Perform CFSFDP clustering.Clustering<PrototypeModel<O>>
Leader. run(Relation<O> relation)
Run the leader clustering algorithm.Clustering<MeanModel>
NaiveMeanShiftClustering. run(Relation<V> relation)
Run the mean-shift clustering algorithm.Clustering<Model>
SNNClustering. run(Relation<O> relation)
Perform SNN clustering -
Uses of Relation in elki.clustering.affinitypropagation
Methods in elki.clustering.affinitypropagation with parameters of type Relation Modifier and Type Method Description double[][]
AffinityPropagationInitialization. getSimilarityMatrix(Relation<O> relation, ArrayDBIDs ids)
Compute the initial similarity matrix.double[][]
DistanceBasedInitializationWithMedian. getSimilarityMatrix(Relation<O> relation, ArrayDBIDs ids)
double[][]
SimilarityBasedInitializationWithMedian. getSimilarityMatrix(Relation<O> relation, ArrayDBIDs ids)
Clustering<MedoidModel>
AffinityPropagation. run(Relation<O> relation)
Perform affinity propagation clustering. -
Uses of Relation in elki.clustering.biclustering
Fields in elki.clustering.biclustering declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>
AbstractBiclustering. relation
Relation we use.Methods in elki.clustering.biclustering with parameters of type Relation Modifier and Type Method Description Clustering<M>
AbstractBiclustering. run(Relation<? extends NumberVector> relation)
Prepares the algorithm for running on a specific database. -
Uses of Relation in elki.clustering.correlation
Fields in elki.clustering.correlation declared as Relation Modifier and Type Field Description private Relation<ParameterizationFunction>
CASH. fulldatabase
The entire relation.private Relation<? extends NumberVector>
HiCO.Instance. relation
Data relation.Methods in elki.clustering.correlation that return Relation Modifier and Type Method Description private Relation<DoubleVector>
CASH. buildDerivatorDB(Relation<ParameterizationFunction> relation, DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified interval.private Relation<ParameterizationFunction>
CASH. preprocess(Relation<? extends NumberVector> vrel)
Preprocess the dataset, precomputing the parameterization functions.Methods in elki.clustering.correlation with parameters of type Relation Modifier and Type Method Description private void
ORCLUS. assign(Relation<? extends NumberVector> database, java.util.List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its closest seed.private MaterializedRelation<ParameterizationFunction>
CASH. buildDB(int dim, double[][] basis, DBIDs ids, Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into the specified subspace.private Relation<DoubleVector>
CASH. buildDerivatorDB(Relation<ParameterizationFunction> relation, DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified interval.private double[]
CASH. determineMinMaxDistance(Relation<ParameterizationFunction> relation, int dimensionality)
Determines the minimum and maximum function value of all parameterization functions stored in the specified database.private static int
CASH. dimensionality(Relation<ParameterizationFunction> relation)
Get the dimensionality of a vector field.private Clustering<Model>
CASH. doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.private java.util.List<java.util.List<Cluster<CorrelationModel>>>
ERiC. extractCorrelationClusters(Clustering<Model> dbscanResult, Relation<? extends NumberVector> relation, int dimensionality, ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.private double[][]
ORCLUS. findBasis(Relation<? extends NumberVector> database, ORCLUS.ORCLUSCluster cluster, int dim)
Finds the basis of the subspace of dimensionalitydim
for the specified cluster.private LMCLUS.Separation
LMCLUS. findSeparation(Relation<? extends NumberVector> relation, DBIDs currentids, int dimension, java.util.Random r)
This method samples a number of linear manifolds an tries to determine which the one with the best cluster is.private void
CASH. initHeap(ObjectHeap<CASHInterval> heap, Relation<ParameterizationFunction> relation, int dim, DBIDs ids)
Initializes the heap with the root intervals.private java.util.List<ORCLUS.ORCLUSCluster>
ORCLUS. initialSeeds(Relation<? extends NumberVector> database, int k)
Initializes the list of seeds wit a random sample of size k.private void
ORCLUS. merge(Relation<? extends NumberVector> relation, java.util.List<ORCLUS.ORCLUSCluster> clusters, int k_new, int d_new, IndefiniteProgress cprogress)
Reduces the number of seeds to k_newprivate Relation<ParameterizationFunction>
CASH. preprocess(Relation<? extends NumberVector> vrel)
Preprocess the dataset, precomputing the parameterization functions.private ORCLUS.ProjectedEnergy
ORCLUS. projectedEnergy(Relation<? extends NumberVector> relation, ORCLUS.ORCLUSCluster c_i, ORCLUS.ORCLUSCluster c_j, int i, int j, int dim)
Computes the projected energy of the specified clusters.Clustering<Model>
CASH. run(Relation<? extends NumberVector> rel)
Run CASH on the relation.Clustering<DimensionModel>
COPAC. run(Database database, Relation<? extends NumberVector> relation)
Run the COPAC algorithm.Clustering<CorrelationModel>
ERiC. run(Database database, Relation<? extends NumberVector> relation)
Performs the ERiC algorithm on the given database.ClusterOrder
HiCO. run(Relation<? extends NumberVector> relation)
Run the HiCO algorithm.Clustering<Model>
LMCLUS. run(Relation<? extends NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this method.Clustering<Model>
ORCLUS. run(Relation<? extends NumberVector> relation)
Performs the ORCLUS algorithm on the given database.private double[][]
CASH. runDerivator(Relation<ParameterizationFunction> relation, int dim, CASHInterval interval, ModifiableDBIDs outids)
Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.private LinearEquationSystem
CASH. runDerivator(Relation<ParameterizationFunction> relation, int dimensionality, DBIDs ids)
Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.private ORCLUS.ORCLUSCluster
ORCLUS. union(Relation<? extends NumberVector> relation, ORCLUS.ORCLUSCluster c1, ORCLUS.ORCLUSCluster c2, int dim)
Returns the union of the two specified clusters.Constructors in elki.clustering.correlation with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation)
Constructor. -
Uses of Relation in elki.clustering.correlation.cash
Fields in elki.clustering.correlation.cash declared as Relation Modifier and Type Field Description private Relation<ParameterizationFunction>
CASHIntervalSplit. database
The database storing the parameterization functions.Constructors in elki.clustering.correlation.cash with parameters of type Relation Constructor Description CASHIntervalSplit(Relation<ParameterizationFunction> database, int minPts)
Initializes the logger and sets the debug status to the given value. -
Uses of Relation in elki.clustering.dbscan
Methods in elki.clustering.dbscan with parameters of type Relation Modifier and Type Method Description protected void
GriDBSCAN.Instance. buildGrid(Relation<V> relation, int numcells, double[] offset)
Build the data grid.protected void
DBSCAN.Instance. run(Relation<O> relation, RangeSearcher<DBIDRef> rangeSearcher)
Run the DBSCAN algorithmClustering<Model>
DBSCAN. run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
GriDBSCAN.Instance. run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
GriDBSCAN. run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.Clustering<Model>
LSDBC. run(Relation<O> relation)
Run the LSDBC algorithmprivate int
GriDBSCAN.Instance. runDBSCANOnCell(DBIDs cellids, Relation<V> relation, ModifiableDoubleDBIDList neighbors, ArrayModifiableDBIDs activeSet, int clusterid)
-
Uses of Relation in elki.clustering.dbscan.predicates
Fields in elki.clustering.dbscan.predicates declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>
ERiCNeighborPredicate.Instance. relation
Vector data relation.Methods in elki.clustering.dbscan.predicates with parameters of type Relation Modifier and Type Method Description protected abstract M
AbstractRangeQueryNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends O> relation)
Method to compute the actual data model.protected COPACNeighborPredicate.COPACModel
COPACNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList knnneighbors, Relation<? extends NumberVector> relation)
COPAC model computationprotected PreDeConNeighborPredicate.PreDeConModel
FourCNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends NumberVector> relation)
protected PreDeConNeighborPredicate.PreDeConModel
PreDeConNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends NumberVector> relation)
COPACNeighborPredicate.Instance
COPACNeighborPredicate. instantiate(Relation<? extends NumberVector> relation)
Full instantiation method.ERiCNeighborPredicate.Instance
ERiCNeighborPredicate. instantiate(Relation<? extends NumberVector> relation)
Full instantiation interface.DataStore<M>
AbstractRangeQueryNeighborPredicate. preprocess(java.lang.Class<? super M> modelcls, Relation<? extends O> relation, RangeSearcher<DBIDRef> query)
Perform the preprocessing step.Constructors in elki.clustering.dbscan.predicates with parameters of type Relation Constructor Description Instance(DBIDs ids, DataStore<PCAFilteredResult> storage, Relation<? extends NumberVector> relation)
Constructor. -
Uses of Relation in elki.clustering.em
Methods in elki.clustering.em with parameters of type Relation Modifier and Type Method Description private void
KDTreeEM.KDTree. aggregateStats(Relation<? extends NumberVector> relation, DBIDArrayIter iter, int dim)
Aggregate the statistics for a leaf node.private double[]
KDTreeEM. analyseDimWidth(Relation<? extends NumberVector> relation)
Helper method to retrieve the widths of all data in all dimensions.double
BetulaGMM. assignProbabilitiesToInstances(Relation<? extends NumberVector> relation, java.util.List<? extends BetulaClusterModel> models, WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.static <O> double
EM. assignProbabilitiesToInstances(Relation<? extends O> relation, java.util.List<? extends EMClusterModel<? super O,?>> models, WritableDataStore<double[]> probClusterIGivenX, WritableDoubleDataStore loglikelihoods)
Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.private void
KDTreeEM.KDTree. computeBoundingBox(Relation<? extends NumberVector> relation, DBIDArrayIter iter)
Compute the bounding box.static <O> void
EM. recomputeCovarianceMatrices(Relation<? extends O> relation, WritableDataStore<double[]> probClusterIGivenX, java.util.List<? extends EMClusterModel<? super O,?>> models, double prior)
Recompute the covariance matrixes.Clustering<EMModel>
BetulaGMM. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<M>
EM. run(Relation<O> relation)
Performs the EM clustering algorithm on the given database.Clustering<EMModel>
KDTreeEM. run(Relation<? extends NumberVector> relation)
Calculates the EM Clustering with the given values by calling makeStats and calculation the new models from the given resultsConstructors in elki.clustering.em with parameters of type Relation Constructor Description KDTree(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs sorted, int left, int right, double[] dimWidth, double mbw)
Constructor for a KDTree with statistics needed for KDTreeEM calculation. -
Uses of Relation in elki.clustering.em.models
Methods in elki.clustering.em.models with parameters of type Relation Modifier and Type Method Description java.util.List<DiagonalGaussianModel>
DiagonalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)
java.util.List<? extends EMClusterModel<O,M>>
EMClusterModelFactory. buildInitialModels(Relation<? extends O> relation, int k)
Build the initial modelsjava.util.List<MultivariateGaussianModel>
MultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)
java.util.List<SphericalGaussianModel>
SphericalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)
java.util.List<TextbookMultivariateGaussianModel>
TextbookMultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)
java.util.List<TextbookSphericalGaussianModel>
TextbookSphericalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)
java.util.List<TwoPassMultivariateGaussianModel>
TwoPassMultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)
-
Uses of Relation in elki.clustering.hierarchical
Methods in elki.clustering.hierarchical with parameters of type Relation Modifier and Type Method Description private void
LinearMemoryNNChain.Instance. nnChainCore(DBIDArrayIter aIt, DBIDArrayIter aIt2, ClusterMergeHistoryBuilder builder, Relation<O> rel)
Core function of NNChain.ClusterMergeHistory
AGNES. run(Relation<O> relation)
Run the algorithmClusterMergeHistory
Anderberg. run(Relation<O> relation)
ClusterPrototypeMergeHistory
HACAM. run(Relation<O> relation)
Run the algorithmClusterDensityMergeHistory
HDBSCANLinearMemory. run(Relation<O> relation)
Run the algorithmClusterMergeHistory
LinearMemoryNNChain.Instance. run(ArrayDBIDs ids, Relation<O> relation, ClusterMergeHistoryBuilder builder)
ClusterMergeHistory
LinearMemoryNNChain. run(Relation<O> relation)
Run the NNchain algorithm.ClusterPrototypeMergeHistory
MedoidLinkage. run(Relation<O> relation)
Run the algorithmClusterPrototypeMergeHistory
MiniMax. run(Relation<O> relation)
Run the algorithm on a database.ClusterPrototypeMergeHistory
MiniMaxAnderberg. run(Relation<O> relation)
Run the algorithmClusterPrototypeMergeHistory
MiniMaxNNChain. run(Relation<O> relation)
Run the algorithmClusterMergeHistory
NNChain. run(Relation<O> relation)
ClusterMergeHistory
SLINK. run(Relation<O> relation)
Performs the SLINK algorithm on the given database.ClusterMergeHistory
SLINKHDBSCANLinearMemory. run(Relation<O> relation)
Run the algorithmprivate void
SLINK. step2primitive(DBIDRef id, DBIDArrayIter it, int n, Relation<? extends O> relation, PrimitiveDistance<? super O> distance, WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the pointer representation to the new object with the specified id. -
Uses of Relation in elki.clustering.hierarchical.birch
Methods in elki.clustering.hierarchical.birch with parameters of type Relation Modifier and Type Method Description CFTree
CFTree.Factory. newTree(DBIDs ids, Relation<? extends NumberVector> relation)
Make a new tree.Clustering<MeanModel>
BIRCHLeafClustering. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<KMeansModel>
BIRCHLloydKMeans. run(Relation<NumberVector> relation)
Run the clustering algorithm. -
Uses of Relation in elki.clustering.kcenter
Methods in elki.clustering.kcenter with parameters of type Relation Modifier and Type Method Description Clustering<SimplePrototypeModel<O>>
GreedyKCenter. run(Relation<O> relation)
Perform greedy k-center clustering on the relation. -
Uses of Relation in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>
AbstractKMeans.Instance. relation
Data relation.Methods in elki.clustering.kmeans with parameters of type Relation Modifier and Type Method Description double
FuzzyCMeans. assignProbabilitiesToInstances(Relation<V> relation, double[][] centers, WritableDataStore<double[]> probClusterIGivenX)
Calculates the weights of all points and clusters.Clustering<KMeansModel>
AbstractKMeans.Instance. buildResult(boolean varstat, Relation<? extends NumberVector> relation)
Build the result, recomputing the cluster variance ifvarstat
is set to true.protected KDTreePruningKMeans.KDNode
KDTreePruningKMeans.Instance. buildTreeBoundedMidpoint(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
Build the k-d-tree using bounded midpoint splitting.protected KDTreePruningKMeans.KDNode
KDTreePruningKMeans.Instance. buildTreeMedian(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
Build the k-d-tree using median splitting.protected KDTreePruningKMeans.KDNode
KDTreePruningKMeans.Instance. buildTreeMidpoint(Relation<? extends NumberVector> relation, int left, int right)
Build the k-d-tree using midpoint splitting.protected KDTreePruningKMeans.KDNode
KDTreePruningKMeans.Instance. buildTreeSSQ(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
Build the k-d-tree using a variance-based splitting strategy.private static double[][]
AbstractKMeans. denseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)
Returns the mean vectors of the given clusters in the given database.protected double[][]
AbstractKMeans. initialMeans(Relation<V> relation)
Choose the initial means.protected static double[][]
AbstractKMeans. means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)
Returns the mean vectors of the given clusters in the given database.protected double[][]
KMediansLloyd.Instance. medians(java.util.List<? extends DBIDs> clusters, double[][] medians, Relation<? extends NumberVector> relation)
Returns the median vectors of the given clusters in the given database.protected void
AbstractKMeans.Instance. recomputeVariance(Relation<? extends NumberVector> relation)
Recompute the cluster variances.Clustering<KMeansModel>
AnnulusKMeans. run(Relation<V> relation)
Clustering<M>
BestOfMultipleKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
BetulaLloydKMeans. run(Relation<NumberVector> relation)
Run the clustering algorithm.Clustering<M>
BisectingKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
CompareMeans. run(Relation<V> relation)
Clustering<KMeansModel>
ElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
ExponionKMeans. run(Relation<V> relation)
Clustering<MeanModel>
FuzzyCMeans. run(Relation<V> relation)
Runs Fuzzy C Means clustering on the given RelationClustering<KMeansModel>
HamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
HartiganWongKMeans. run(Relation<V> rel)
Clustering<KMeansModel>
KDTreeFilteringKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
KDTreePruningKMeans. run(Relation<V> relation)
Clustering<M>
KMeans. run(Relation<V> rel)
Run the clustering algorithm.Clustering<KMeansModel>
KMeansMinusMinus. run(Relation<V> relation)
Clustering<MeanModel>
KMediansLloyd. run(Relation<V> relation)
Clustering<KMeansModel>
LloydKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
MacQueenKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
ShallotKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SimplifiedElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SingleAssignmentKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SortMeans. run(Relation<V> relation)
Clustering<M>
XMeans. run(Relation<V> relation)
Run the algorithm on a database and relation.Clustering<KMeansModel>
YinYangKMeans. run(Relation<V> rel)
private static double[][]
AbstractKMeans. sparseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends SparseNumberVector> relation)
Returns the mean vectors of the given clusters in the given database.protected double[][]
GMeans. splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation)
protected double[][]
XMeans. splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation)
Split an existing centroid into two initial centers.protected java.util.List<Cluster<M>>
GMeans. splitCluster(Cluster<M> parentCluster, Relation<V> relation)
protected java.util.List<Cluster<M>>
XMeans. splitCluster(Cluster<M> parentCluster, Relation<V> relation)
Conditionally splits the clusters based on the information criterion.private double
FuzzyCMeans. updateMeans(Relation<V> relation, WritableDataStore<double[]> probClusterIGivenX, double[][] means, int d)
Updates the means according to the weighted means of all data points.Constructors in elki.clustering.kmeans with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means, int t)
Constructor.KDNode(Relation<? extends NumberVector> relation, DBIDArrayIter iter, int start, int end)
Constructor. -
Uses of Relation in elki.clustering.kmeans.initialization
Fields in elki.clustering.kmeans.initialization declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>
KMC2.Instance. relation
Data relation.protected Relation<? extends NumberVector>
KMeansPlusPlus.NumberVectorInstance. relation
Data relation.protected Relation<? extends NumberVector>
SphericalKMeansPlusPlus.Instance. relation
Data relation.Methods in elki.clustering.kmeans.initialization with parameters of type Relation Modifier and Type Method Description double[][]
AFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
FarthestPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
FarthestSumPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
FirstK. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
KMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
KMeansInitialization. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
Choose initial meansdouble[][]
KMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
Ostrovsky. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
Predefined. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
RandomlyChosen. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
RandomNormalGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
RandomUniformGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
SampleKMeans. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
SphericalAFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
SphericalKMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
Ostrovsky.NumberVectorInstance. run(Relation<? extends NumberVector> relation, int k)
Constructors in elki.clustering.kmeans.initialization with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)
Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)
Constructor.Instance(Relation<? extends NumberVector> relation, int m, double alpha, RandomFactory rnd)
Constructor.Instance(Relation<? extends NumberVector> relation, double alpha, RandomFactory rnd)
Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)
Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)
Constructor. -
Uses of Relation in elki.clustering.kmeans.parallel
Fields in elki.clustering.kmeans.parallel declared as Relation Modifier and Type Field Description private Relation<V>
KMeansProcessor.Instance. relation
Data relation.(package private) Relation<V>
KMeansProcessor. relation
Data relation.Methods in elki.clustering.kmeans.parallel with parameters of type Relation Modifier and Type Method Description Clustering<KMeansModel>
ParallelLloydKMeans. run(Relation<V> relation)
Constructors in elki.clustering.kmeans.parallel with parameters of type Relation Constructor Description Instance(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[][] means)
Constructor.KMeansProcessor(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[] varsum)
Constructor. -
Uses of Relation in elki.clustering.kmeans.quality
Methods in elki.clustering.kmeans.quality with parameters of type Relation Modifier and Type Method Description static double
AbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionXMeans. logLikelihoodXMeans(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static double
BayesianInformationCriterionZhao. logLikelihoodZhao(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)
Computes log likelihood of an entire clustering.static int
AbstractKMeansQualityMeasure. numberOfFreeParameters(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering)
Compute the number of free parameters.<V extends NumberVector>
doubleAkaikeInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleAkaikeInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleBayesianInformationCriterionZhao. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends O>
doubleKMeansQualityMeasure. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
Calculates and returns the quality measure.<V extends NumberVector>
doubleWithinClusterMeanDistance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
<V extends NumberVector>
doubleWithinClusterVariance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
static double
AbstractKMeansQualityMeasure. varianceContributionOfCluster(Cluster<? extends MeanModel> cluster, NumberVectorDistance<?> distance, Relation<? extends NumberVector> relation)
Variance contribution of a single cluster. -
Uses of Relation in elki.clustering.kmeans.spherical
Methods in elki.clustering.kmeans.spherical with parameters of type Relation Modifier and Type Method Description protected static double[][]
SphericalKMeans.Instance. means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)
Returns the mean vectors of the given clusters in the given database.protected void
SphericalKMeans.Instance. recomputeVariance(Relation<? extends NumberVector> relation)
Clustering<KMeansModel>
EuclideanSphericalElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
EuclideanSphericalHamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
EuclideanSphericalSimplifiedElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalHamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalSimplifiedElkanKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalSimplifiedHamerlyKMeans. run(Relation<V> relation)
Clustering<KMeansModel>
SphericalSingleAssignmentKMeans. run(Relation<V> relation)
Constructors in elki.clustering.kmeans.spherical with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor. -
Uses of Relation in elki.clustering.kmedoids
Methods in elki.clustering.kmedoids that return Relation Modifier and Type Method Description Relation<? extends V>
CLARA.CachedDistanceQuery. getRelation()
Methods in elki.clustering.kmedoids with parameters of type Relation Modifier and Type Method Description Clustering<MedoidModel>
AlternatingKMedoids. run(Relation<O> relation)
Clustering<MedoidModel>
AlternatingKMedoids. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
CLARA. run(Relation<V> relation)
Clustering<MedoidModel>
CLARA. run(Relation<V> relation, int k, DistanceQuery<? super V> distQ)
Clustering<MedoidModel>
CLARANS. run(Relation<O> relation)
Run CLARANS clustering.Clustering<MedoidModel>
CLARANS. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
EagerPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastCLARA. run(Relation<V> relation)
Clustering<MedoidModel>
FastCLARA. run(Relation<V> relation, int k, DistanceQuery<? super V> distQ)
Clustering<MedoidModel>
FastCLARANS. run(Relation<V> relation)
Clustering<MedoidModel>
FasterCLARA. run(Relation<O> relation)
Clustering<MedoidModel>
FasterCLARA. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FasterPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastPAM1. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
KMedoidsClustering. run(Relation<O> relation)
Run k-medoids clustering.Clustering<MedoidModel>
KMedoidsClustering. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Run k-medoids clustering with a given distance query.
Not a very elegant API, but needed for some types of nested k-medoids.Clustering<MedoidModel>
PAM. run(Relation<O> relation)
Clustering<MedoidModel>
PAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
ReynoldsPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
SingleAssignmentKMedoids. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
-
Uses of Relation in elki.clustering.kmedoids.initialization
Methods in elki.clustering.kmedoids.initialization with parameters of type Relation Modifier and Type Method Description double[][]
BUILD. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
LAB. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
double[][]
ParkJun. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)
-
Uses of Relation in elki.clustering.meta
Methods in elki.clustering.meta with parameters of type Relation Modifier and Type Method Description private void
ExternalClustering. attachToRelation(Relation<?> r, it.unimi.dsi.fastutil.ints.IntArrayList assignment, java.util.ArrayList<java.lang.String> name)
Build a clustering from the file result. -
Uses of Relation in elki.clustering.onedimensional
Methods in elki.clustering.onedimensional with parameters of type Relation Modifier and Type Method Description Clustering<ClusterModel>
KNNKernelDensityMinimaClustering. run(Relation<? extends NumberVector> relation)
Run the clustering algorithm on a data relation. -
Uses of Relation in elki.clustering.optics
Methods in elki.clustering.optics with parameters of type Relation Modifier and Type Method Description abstract ClusterOrder
AbstractOPTICS. run(Relation<O> relation)
Run OPTICS on the database.ClusterOrder
DeLiClu. run(Relation<V> relation)
Run the DeLiClu clustering algorithm.ClusterOrder
FastOPTICS. run(Relation<V> relation)
Run the algorithm.ClusterOrder
OPTICSHeap. run(Relation<O> relation)
ClusterOrder
OPTICSList. run(Relation<O> relation)
Constructors in elki.clustering.optics with parameters of type Relation Constructor Description Instance(Relation<O> relation)
Constructor for a single data set.Instance(Relation<O> relation)
Constructor for a single data set. -
Uses of Relation in elki.clustering.silhouette
Methods in elki.clustering.silhouette with parameters of type Relation Modifier and Type Method Description Clustering<MedoidModel>
FasterMSC. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
FastMSC. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
PAMMEDSIL. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
Clustering<MedoidModel>
PAMSIL. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)
-
Uses of Relation in elki.clustering.subspace
Fields in elki.clustering.subspace declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>
DiSH.Instance. relation
Data relation.private Relation<? extends NumberVector>
HiSC.Instance. relation
Data relation.Methods in elki.clustering.subspace with parameters of type Relation Modifier and Type Method Description private java.util.ArrayList<PROCLUS.PROCLUSCluster>
PROCLUS. assignPoints(ArrayDBIDs m_current, long[][] dimensions, Relation<? extends NumberVector> database)
Assigns the objects to the clusters.private void
P3C. assignUnassigned(Relation<? extends NumberVector> relation, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis distance.private double
PROCLUS. avgDistance(double[] centroid, DBIDs objectIDs, Relation<? extends NumberVector> database, int dimension)
Computes the average distance of the objects to the centroid along the specified dimension.private void
DiSH. buildHierarchy(Relation<? extends NumberVector> database, Clustering<SubspaceModel> clustering, java.util.List<Cluster<SubspaceModel>> clusters, int dimensionality)
Builds the cluster hierarchy.private void
DiSH. checkClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Removes the clusters with size < minpts from the cluster map and adds them to their parents.private Clustering<SubspaceModel>
DiSH. computeClusters(Relation<? extends NumberVector> database, DiSH.DiSHClusterOrder clusterOrder)
Computes the hierarchical clusters according to the cluster order.private void
P3C. computeFuzzyMembership(Relation<? extends NumberVector> relation, java.util.ArrayList<P3C.Signature> clusterCores, ModifiableDBIDs unassigned, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, int dim)
Computes a fuzzy membership with the weights based on which cluster cores each data point is part of.protected boolean
DOC. dimensionIsRelevant(int dimension, Relation<? extends NumberVector> relation, DBIDs points)
Utility method to test if a given dimension is relevant as determined via a set of reference points (i.e. if the variance along the attribute is lower than the threshold).private double
PROCLUS. evaluateClusters(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters, long[][] dimensions, Relation<? extends NumberVector> database)
Evaluates the quality of the clusters.private it.unimi.dsi.fastutil.objects.Object2ObjectOpenCustomHashMap<long[],java.util.List<ArrayModifiableDBIDs>>
DiSH. extractClusters(Relation<? extends NumberVector> relation, DiSH.DiSHClusterOrder clusterOrder)
Extracts the clusters from the cluster order.private java.util.List<PROCLUS.PROCLUSCluster>
PROCLUS. finalAssignment(java.util.List<Pair<double[],long[]>> dimensions, Relation<? extends NumberVector> database)
Refinement step to assign the objects to the final clusters.private java.util.List<CLIQUESubspace>
CLIQUE. findDenseSubspaceCandidates(Relation<? extends NumberVector> database, java.util.List<CLIQUESubspace> denseSubspaces)
Determines thek
-dimensional dense subspace candidates from the specified(k-1)
-dimensional dense subspaces.private java.util.List<CLIQUESubspace>
CLIQUE. findDenseSubspaces(Relation<? extends NumberVector> database, java.util.List<CLIQUESubspace> denseSubspaces)
Determines thek
-dimensional dense subspaces and performs a pruning if this option is chosen.private long[][]
PROCLUS. findDimensions(ArrayDBIDs medoids, Relation<? extends NumberVector> relation, DistanceQuery<? extends NumberVector> distance, RangeSearcher<DBIDRef> rangeQuery)
Determines the set of correlated dimensions for each medoid in the specified medoid set.private java.util.List<Pair<double[],long[]>>
PROCLUS. findDimensions(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters, Relation<? extends NumberVector> database)
Refinement step that determines the set of correlated dimensions for each cluster centroid.protected DBIDs
DOC. findNeighbors(DBIDRef q, long[] nD, ArrayModifiableDBIDs S, Relation<? extends NumberVector> relation)
Find the neighbors of point q in the given subspaceprivate java.util.List<CLIQUESubspace>
CLIQUE. findOneDimensionalDenseSubspaceCandidates(Relation<? extends NumberVector> database)
Determines the one-dimensional dense subspace candidates by making a pass over the database.private java.util.List<CLIQUESubspace>
CLIQUE. findOneDimensionalDenseSubspaces(Relation<? extends NumberVector> database)
Determines the one dimensional dense subspaces and performs a pruning if this option is chosen.private void
P3C. findOutliers(Relation<? extends NumberVector> relation, java.util.List<MultivariateGaussianModel> models, java.util.ArrayList<P3C.ClusterCandidate> clusterCandidates, ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each point in a cluster against the critical value of the ChiSquared distribution with as many degrees of freedom as the cluster has relevant attributes.private Pair<long[],ArrayModifiableDBIDs>
DiSH. findParent(Relation<? extends NumberVector> relation, Pair<long[],ArrayModifiableDBIDs> child, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified clusterprivate java.util.Collection<CLIQUEUnit>
CLIQUE. initOneDimensionalUnits(Relation<? extends NumberVector> database)
Initializes and returns the one dimensional units.private boolean
DiSH. isParent(Relation<? extends NumberVector> relation, Cluster<SubspaceModel> parent, It<Cluster<SubspaceModel>> iter, int db_dim)
Returns true, if the specified parent cluster is a parent of one child of the children clusters.protected Cluster<SubspaceModel>
DOC. makeCluster(Relation<? extends NumberVector> relation, DBIDs C, long[] D)
Utility method to create a subspace cluster from a list of DBIDs and the relevant attributes.private SetDBIDs[][]
P3C. partitionData(Relation<? extends NumberVector> relation, int bins)
Partition the data set intobins
bins in each dimension independently.Clustering<SubspaceModel>
CLIQUE. run(Relation<? extends NumberVector> relation)
Performs the CLIQUE algorithm on the given database.Clustering<SubspaceModel>
DiSH. run(Relation<? extends NumberVector> relation)
Performs the DiSH algorithm on the given database.Clustering<SubspaceModel>
DOC. run(Relation<? extends NumberVector> relation)
Performs the DOC or FastDOC (as configured) algorithm.ClusterOrder
HiSC. run(Relation<? extends NumberVector> relation)
Run the HiSC algorithmClustering<SubspaceModel>
P3C. run(Relation<? extends NumberVector> relation)
Performs the P3C algorithm on the given Database.<V extends NumberVector>
Clustering<SubspaceModel>PROCLUS. run(Relation<V> relation)
Performs the PROCLUS algorithm on the given database.Clustering<SubspaceModel>
SUBCLU. run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database.private java.util.List<Cluster<Model>>
SUBCLU. runDBSCAN(Relation<V> relation, DBIDs ids, Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the given subspace.protected Cluster<SubspaceModel>
DOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)
Performs a single run of DOC, finding a single cluster.protected Cluster<SubspaceModel>
FastDOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)
Performs a single run of FastDOC, finding a single cluster.private java.util.List<Cluster<SubspaceModel>>
DiSH. sortClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order.Constructors in elki.clustering.subspace with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation)
Constructor.Instance(Relation<? extends NumberVector> relation)
Constructor. -
Uses of Relation in elki.clustering.svm
Methods in elki.clustering.svm with parameters of type Relation Modifier and Type Method Description private boolean
SupportVectorClustering. checkConnectivity(Relation<NumberVector> relation, double[] start, DBIDRef destRef, RegressionModel model, double fixed, ArrayDBIDs ids, SimilarityQuery<NumberVector> sim, double r_squared)
Checks if the connecting line between start and dest lies inside the kernel space sphere.Clustering<Model>
SupportVectorClustering. run(Relation<NumberVector> relation)
perform clustering -
Uses of Relation in elki.clustering.trivial
Methods in elki.clustering.trivial with parameters of type Relation Modifier and Type Method Description private java.util.HashMap<java.lang.String,DBIDs>
ByLabelClustering. multipleAssignment(Relation<?> data)
Assigns the objects of the database to multiple clusters according to their labels.Clustering<Model>
ByLabelClustering. run(Relation<?> relation)
Run the actual clustering algorithm.Clustering<Model>
ByLabelHierarchicalClustering. run(Relation<?> relation)
Run the actual clustering algorithm.Clustering<Model>
ByModelClustering. run(Relation<Model> relation)
Run the actual clustering algorithm.Clustering<Model>
TrivialAllInOne. run(Relation<?> relation)
Perform trivial clustering.Clustering<Model>
TrivialAllNoise. run(Relation<?> relation)
Run the trivial clustering algorithm.private java.util.HashMap<java.lang.String,DBIDs>
ByLabelClustering. singleAssignment(Relation<?> data)
Assigns the objects of the database to single clusters according to their labels. -
Uses of Relation in elki.clustering.uncertain
Fields in elki.clustering.uncertain declared as Relation Modifier and Type Field Description private Relation<? extends UncertainObject>
FDBSCANNeighborPredicate.Instance. relation
The relation holding the uncertain objects.Methods in elki.clustering.uncertain with parameters of type Relation Modifier and Type Method Description protected boolean
UKMeans. assignToNearestCluster(Relation<DiscreteUncertainObject> relation, java.util.List<double[]> means, java.util.List<? extends ModifiableDBIDs> clusters, WritableIntegerDataStore assignment, double[] varsum)
Returns a list of clusters.protected java.util.List<double[]>
UKMeans. means(java.util.List<? extends ModifiableDBIDs> clusters, java.util.List<double[]> means, Relation<DiscreteUncertainObject> database)
Returns the mean vectors of the given clusters in the given database.C
CenterOfMassMetaClustering. run(Relation<? extends UncertainObject> relation)
This run method will do the wrapping.Clustering<?>
RepresentativeUncertainClustering. run(Database database, Relation<? extends UncertainObject> relation)
This run method will do the wrapping.Clustering<KMeansModel>
UKMeans. run(Relation<DiscreteUncertainObject> relation)
Run the clustering.Constructors in elki.clustering.uncertain with parameters of type Relation Constructor Description Instance(double epsilon, int sampleSize, double threshold, Relation<? extends UncertainObject> relation, RandomFactory rand)
Constructor. -
Uses of Relation in elki.data
Fields in elki.data declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>
VectorUtil.SortDBIDsBySingleDimension. data
The relation to sort.Constructors in elki.data with parameters of type Relation Constructor Description SortDBIDsBySingleDimension(Relation<? extends NumberVector> data)
Constructor.SortDBIDsBySingleDimension(Relation<? extends NumberVector> data, int dim)
Constructor. -
Uses of Relation in elki.data.model
Methods in elki.data.model with parameters of type Relation Modifier and Type Method Description static NumberVector
ModelUtil. getPrototype(Model model, Relation<? extends NumberVector> relation)
Get the representative vector for a cluster model.static <V extends NumberVector>
VModelUtil. getPrototype(Model model, Relation<? extends V> relation, NumberVector.Factory<V> factory)
Get (and convert!)static NumberVector
ModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends NumberVector> relation, DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid.static <V extends NumberVector>
VModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends V> relation, DBIDs ids, NumberVector.Factory<V> factory)
Get the representative vector for a cluster model, or compute the centroid.Constructors in elki.data.model with parameters of type Relation Constructor Description CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<? extends NumberVector> db, double[][] strongEigenvectors, double[][] weakEigenvectors, double[][] similarityMatrix, double[] centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<? extends NumberVector> db, double[][] strongEigenvectors, double[][] weakEigenvectors, double[][] similarityMatrix, double[] centroid, java.text.NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and number format. -
Uses of Relation in elki.database
Fields in elki.database with type parameters of type Relation Modifier and Type Field Description protected java.util.List<Relation<?>>
AbstractDatabase. relations
The relations we manage.Methods in elki.database that return Relation Modifier and Type Method Description private Relation<?>
HashmapDatabase. addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta.protected Relation<?>[]
HashmapDatabase. alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding new database columns when needed.<O> Relation<O>
AbstractDatabase. getRelation(TypeInformation restriction, java.lang.Object... hints)
<O> Relation<O>
Database. getRelation(TypeInformation restriction, java.lang.Object... hints)
Get an object representation.static Relation<java.lang.String>
DatabaseUtil. guessLabelRepresentation(Database database)
Guess a potentially label-like representation, preferring class labels.static Relation<java.lang.String>
DatabaseUtil. guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation.Methods in elki.database that return types with arguments of type Relation Modifier and Type Method Description java.util.Collection<Relation<?>>
AbstractDatabase. getRelations()
java.util.Collection<Relation<?>>
Database. getRelations()
Get all relations of a database.Methods in elki.database with parameters of type Relation Modifier and Type Method Description void
ProxyDatabase. addRelation(Relation<?> relation)
Add a new representation.static java.util.SortedSet<ClassLabel>
DatabaseUtil. getClassLabels(Relation<? extends ClassLabel> database)
Retrieves all class labels within the database.Constructors in elki.database with parameters of type Relation Constructor Description ProxyDatabase(DBIDs ids, Relation<?>... relations)
Constructor.Constructor parameters in elki.database with type arguments of type Relation Constructor Description ProxyDatabase(DBIDs ids, java.lang.Iterable<Relation<?>> relations)
Constructor. -
Uses of Relation in elki.database.query
Fields in elki.database.query declared as Relation Modifier and Type Field Description private Relation<O>
QueryBuilder. relation
Relation to query.private Relation<? extends O>
WrappedPrioritySearchDBIDByLookup. relation
Data relation.Methods in elki.database.query with parameters of type Relation Modifier and Type Method Description <O> DistanceQuery<O>
EmpiricalQueryOptimizer. getDistanceQuery(Relation<? extends O> relation, Distance<? super O> distance, int flags)
default <O> DistanceQuery<O>
QueryOptimizer. getDistanceQuery(Relation<? extends O> relation, Distance<? super O> distanceFunction, int flags)
Optimize a distance query for this relation.default <O> SimilarityQuery<O>
QueryOptimizer. getSimilarityQuery(Relation<? extends O> relation, Similarity<? super O> similarityFunction, int flags)
Optimize a similarity query for this relation.<O> KNNSearcher<DBIDRef>
EmpiricalQueryOptimizer. kNNByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)
default <O> KNNSearcher<DBIDRef>
QueryOptimizer. kNNByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)
Optimize a kNN query for this relation.<O> KNNSearcher<O>
EmpiricalQueryOptimizer. kNNByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)
default <O> KNNSearcher<O>
QueryOptimizer. kNNByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)
Optimize a kNN query for this relation.private <O> DistancePriorityIndex<O>
EmpiricalQueryOptimizer. makeCoverTree(Relation<? extends O> relation, Distance<? super O> distance, int leafsize)
private <O> DistancePriorityIndex<O>
EmpiricalQueryOptimizer. makeKDTree(Relation<? extends O> relation, Distance<? super O> distance, int k)
private <O> KNNIndex<O>
EmpiricalQueryOptimizer. makeKnnPreprocessor(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)
Make a knn preprocessor.private <O> DistancePriorityIndex<O>
EmpiricalQueryOptimizer. makeMatrixIndex(Relation<? extends O> relation, Distance<? super O> distance)
private <O> DistancePriorityIndex<O>
EmpiricalQueryOptimizer. makeVPTree(Relation<? extends O> relation, Distance<? super O> distance, int leafsize)
<O> PrioritySearcher<DBIDRef>
EmpiricalQueryOptimizer. priorityByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
default <O> PrioritySearcher<DBIDRef>
QueryOptimizer. priorityByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
Optimize a distance priority search for this relation.<O> PrioritySearcher<O>
EmpiricalQueryOptimizer. priorityByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
default <O> PrioritySearcher<O>
QueryOptimizer. priorityByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
Optimize a distance priority search for this relation.<O> RangeSearcher<DBIDRef>
EmpiricalQueryOptimizer. rangeByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
default <O> RangeSearcher<DBIDRef>
QueryOptimizer. rangeByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
Optimize a range query for this relation.<O> RangeSearcher<O>
EmpiricalQueryOptimizer. rangeByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
default <O> RangeSearcher<O>
QueryOptimizer. rangeByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)
Optimize a range query for this relation.default <O> RKNNSearcher<DBIDRef>
QueryOptimizer. rkNNByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)
Optimize a reverse nearest neighbors query for this relation.default <O> RKNNSearcher<O>
QueryOptimizer. rkNNByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)
Optimize a reverse nearest neighbors query for this relation.default <O> RangeSearcher<DBIDRef>
QueryOptimizer. similarityRangeByDBID(Relation<? extends O> relation, SimilarityQuery<O> simQuery, double maxrange, int flags)
Optimize a range query for this relation.default <O> RangeSearcher<O>
QueryOptimizer. similarityRangeByObject(Relation<? extends O> relation, SimilarityQuery<O> simQuery, double maxrange, int flags)
Optimize a range query for this relation.static <O> PrioritySearcher<DBIDRef>
WrappedPrioritySearchDBIDByLookup. wrap(Relation<? extends O> relation, PrioritySearcher<O> inner)
Wrap a query, if notnull
.Constructors in elki.database.query with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, PrioritySearcher<O> inner)
Constructor.QueryBuilder(Relation<O> relation, Distance<? super O> distance)
Constructor.QueryBuilder(Relation<O> relation, Similarity<? super O> similarity)
Constructor.WrappedPrioritySearchDBIDByLookup(Relation<? extends O> relation, PrioritySearcher<O> inner)
Constructor. -
Uses of Relation in elki.database.query.distance
Fields in elki.database.query.distance declared as Relation Modifier and Type Field Description protected Relation<DBID>
DBIDDistanceQuery. relation
Relation to query.protected Relation<? extends O>
PrimitiveDistanceQuery. relation
The data to use for this queryMethods in elki.database.query.distance that return Relation Modifier and Type Method Description Relation<? extends DBID>
DBIDDistanceQuery. getRelation()
Relation<? extends O>
DistanceQuery. getRelation()
Access the underlying data query.Relation<? extends O>
PrimitiveDistanceQuery. getRelation()
Constructors in elki.database.query.distance with parameters of type Relation Constructor Description DBIDDistanceQuery(Relation<DBID> relation, DBIDDistance distanceFunction)
Constructor.DBIDRangeDistanceQuery(Relation<DBID> relation, DBIDRangeDistance distanceFunction)
Constructor.PrimitiveDistanceQuery(Relation<? extends O> relation, PrimitiveDistance<? super O> distanceFunction)
Constructor.PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation, PrimitiveDistance<? super O> distanceFunction, PrimitiveSimilarity<? super O> similarityFunction)
Constructor.SpatialPrimitiveDistanceQuery(Relation<? extends V> relation, SpatialPrimitiveDistance<? super V> distanceFunction)
SpatialPrimitiveDistanceSimilarityQuery(Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distanceFunction, PrimitiveSimilarity<? super O> similarityFunction)
Constructor. -
Uses of Relation in elki.database.query.knn
Fields in elki.database.query.knn declared as Relation Modifier and Type Field Description protected Relation<? extends O>
LinearScanPrimitiveKNNByObject. relation
Relation to query.protected Relation<?>
PreprocessorKNNQuery. relation
The data to use for this queryprivate Relation<? extends O>
WrappedKNNDBIDByLookup. relation
Data relation.Methods in elki.database.query.knn with parameters of type Relation Modifier and Type Method Description static <O> KNNSearcher<DBIDRef>
WrappedKNNDBIDByLookup. wrap(Relation<? extends O> relation, KNNSearcher<O> inner)
Wrap a query, if notnull
.Constructors in elki.database.query.knn with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, KNNSearcher<O> inner)
Constructor.PreprocessorKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)
Constructor.PreprocessorSqrtKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)
Constructor.PreprocessorSquaredKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)
Constructor.WrappedKNNDBIDByLookup(Relation<? extends O> relation, KNNSearcher<O> inner)
Constructor. -
Uses of Relation in elki.database.query.range
Fields in elki.database.query.range declared as Relation Modifier and Type Field Description private Relation<? extends O>
LinearScanEuclideanRangeByObject. relation
Relation to scan.private Relation<? extends O>
WrappedRangeDBIDByLookup. relation
Data relation.Methods in elki.database.query.range with parameters of type Relation Modifier and Type Method Description static <O> RangeSearcher<DBIDRef>
WrappedRangeDBIDByLookup. wrap(Relation<? extends O> relation, RangeSearcher<O> inner)
Wrap a query, if notnull
.Constructors in elki.database.query.range with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, RangeSearcher<O> inner)
Constructor.WrappedRangeDBIDByLookup(Relation<? extends O> relation, RangeSearcher<O> inner)
Constructor. -
Uses of Relation in elki.database.query.rknn
Fields in elki.database.query.rknn declared as Relation Modifier and Type Field Description protected Relation<? extends O>
PreprocessorRKNNQuery. relation
The data to use for this queryprivate Relation<? extends O>
WrappedRKNNDBIDByLookup. relation
Data relation.Methods in elki.database.query.rknn with parameters of type Relation Modifier and Type Method Description static <O> RKNNSearcher<DBIDRef>
WrappedRKNNDBIDByLookup. wrap(Relation<? extends O> relation, RKNNSearcher<O> inner)
Wrap a query, if notnull
.Constructors in elki.database.query.rknn with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, RKNNSearcher<O> inner)
Constructor.PreprocessorRKNNQuery(Relation<O> database, MaterializeKNNAndRKNNPreprocessor.Factory<O> preprocessor)
Constructor.PreprocessorRKNNQuery(Relation<O> relation, MaterializeKNNAndRKNNPreprocessor<O> preprocessor)
Constructor.WrappedRKNNDBIDByLookup(Relation<? extends O> relation, RKNNSearcher<O> inner)
Constructor. -
Uses of Relation in elki.database.query.similarity
Fields in elki.database.query.similarity declared as Relation Modifier and Type Field Description protected Relation<? extends O>
PrimitiveSimilarityQuery. relation
The data to use for this queryMethods in elki.database.query.similarity that return Relation Modifier and Type Method Description Relation<? extends O>
PrimitiveSimilarityQuery. getRelation()
Relation<? extends O>
SimilarityQuery. getRelation()
Access the underlying data query.Constructors in elki.database.query.similarity with parameters of type Relation Constructor Description PrimitiveSimilarityQuery(Relation<? extends O> relation, PrimitiveSimilarity<? super O> similarityFunction)
Constructor. -
Uses of Relation in elki.database.relation
Subinterfaces of Relation in elki.database.relation Modifier and Type Interface Description interface
DoubleRelation
Interface for double-valued relations.interface
ModifiableRelation<O>
Relations that allow modification.Classes in elki.database.relation that implement Relation Modifier and Type Class Description class
ConvertToStringView
Representation adapter that uses toString() to produce a string representation.class
DBIDView
Pseudo-representation that is the object ID itself.class
MaterializedDoubleRelation
Represents a single representation.class
MaterializedRelation<O>
Represents a single representation.class
ProjectedView<IN,OUT>
Projected relation view (non-materialized)class
ProxyView<O>
A virtual partitioning of the database.Fields in elki.database.relation declared as Relation Modifier and Type Field Description (package private) Relation<? extends O>
RelationUtil.RelationObjectIterator. database
The database we use.(package private) Relation<? extends O>
RelationUtil.CollectionFromRelation. db
The database we query.(package private) Relation<?>
ConvertToStringView. existing
The database we useprivate Relation<? extends IN>
ProjectedView. inner
The wrapped representation where we get the IDs from.private Relation<O>
ProxyView. inner
The wrapped representation where we get the IDs from.Methods in elki.database.relation that return Relation Modifier and Type Method Description static <V extends NumberVector,T extends NumberVector>
Relation<V>RelationUtil. relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.Methods in elki.database.relation with parameters of type Relation Modifier and Type Method Description static <V extends FeatureVector<?>>
VectorFieldTypeInformation<V>RelationUtil. assumeVectorField(Relation<V> relation)
Get the vector field type information from a relation.static double[][]
RelationUtil. computeMinMax(Relation<? extends NumberVector> relation)
Determines the minimum and maximum values in each dimension of all objects stored in the given database.static int
RelationUtil. dimensionality(Relation<? extends SpatialComparable> relation)
Get the dimensionality of a database relation.static <V extends SpatialComparable>
java.lang.StringRelationUtil. getColumnLabel(Relation<? extends V> rel, int col)
Get the column name or produce a generic label "Column XY".static <V extends NumberVector>
NumberVector.Factory<V>RelationUtil. getNumberVectorFactory(Relation<V> relation)
Get the number vector factory of a database relation.static int
RelationUtil. maxDimensionality(Relation<? extends SpatialComparable> relation)
Get the dimensionality of a database relation.static double[][]
RelationUtil. relationAsMatrix(Relation<? extends NumberVector> relation, ArrayDBIDs ids)
Copy a relation into a double matrix.static <V extends NumberVector,T extends NumberVector>
Relation<V>RelationUtil. relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.Constructors in elki.database.relation with parameters of type Relation Constructor Description CollectionFromRelation(Relation<? extends O> db)
Constructor.ConvertToStringView(Relation<?> existing)
Constructor.ProjectedView(Relation<? extends IN> inner, Projection<IN,OUT> projection)
Constructor.ProxyView(DBIDs idview, Relation<O> inner)
Constructor.RelationObjectIterator(DBIDIter iter, Relation<? extends O> database)
Full Constructor.RelationObjectIterator(Relation<? extends O> database)
Simplified constructor. -
Uses of Relation in elki.distance
Fields in elki.distance declared as Relation Modifier and Type Field Description protected Relation<O>
AbstractDatabaseDistance.Instance. relation
Relation to query.protected Relation<O>
AbstractIndexBasedDistance.Instance. relation
Relation to query.Methods in elki.distance that return Relation Modifier and Type Method Description Relation<? extends O>
AbstractDatabaseDistance.Instance. getRelation()
Relation<? extends O>
AbstractIndexBasedDistance.Instance. getRelation()
Methods in elki.distance with parameters of type Relation Modifier and Type Method Description <O extends DBID>
DistanceQuery<O>AbstractDBIDRangeDistance. instantiate(Relation<O> database)
<T extends O>
DistanceQuery<T>Distance. instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query.default <T extends O>
DistanceQuery<T>PrimitiveDistance. instantiate(Relation<T> relation)
<T extends DBID>
DistanceQuery<T>RandomStableDistance. instantiate(Relation<T> relation)
<T extends O>
SharedNearestNeighborJaccardDistance.Instance<T>SharedNearestNeighborJaccardDistance. instantiate(Relation<T> database)
default <T extends V>
SpatialPrimitiveDistanceQuery<T>SpatialPrimitiveDistance. instantiate(Relation<T> relation)
Constructors in elki.distance with parameters of type Relation Constructor Description Instance(Relation<O> relation, Distance<? super O> parent)
Constructor.Instance(Relation<O> relation, I index, F parent)
Constructor.Instance(Relation<T> database, SharedNearestNeighborIndex<T> preprocessor, SharedNearestNeighborJaccardDistance<T> parent)
Constructor. -
Uses of Relation in elki.distance.adapter
Methods in elki.distance.adapter with parameters of type Relation Modifier and Type Method Description abstract <T extends O>
DistanceQuery<T>AbstractSimilarityAdapter. instantiate(Relation<T> database)
<T extends O>
DistanceQuery<T>ArccosSimilarityAdapter. instantiate(Relation<T> database)
<T extends O>
DistanceQuery<T>LinearSimilarityAdapter. instantiate(Relation<T> database)
<T extends O>
DistanceQuery<T>LnSimilarityAdapter. instantiate(Relation<T> database)
Constructors in elki.distance.adapter with parameters of type Relation Constructor Description Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<? super O> similarityQuery)
Constructor.Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<O> similarityQuery)
Constructor.Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<? super O> similarityQuery)
Constructor.Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<O> similarityQuery)
Constructor. -
Uses of Relation in elki.distance.external
Methods in elki.distance.external with parameters of type Relation Modifier and Type Method Description <O extends DBID>
DistanceQuery<O>FileBasedSparseDoubleDistance. instantiate(Relation<O> relation)
<O extends DBID>
DistanceQuery<O>FileBasedSparseFloatDistance. instantiate(Relation<O> relation)
-
Uses of Relation in elki.distance.probabilistic
Methods in elki.distance.probabilistic with parameters of type Relation Modifier and Type Method Description <T extends NumberVector>
SpatialPrimitiveDistanceSimilarityQuery<T>HellingerDistance. instantiate(Relation<T> database)
-
Uses of Relation in elki.distance.set
Methods in elki.distance.set with parameters of type Relation Modifier and Type Method Description <T extends FeatureVector<?>>
DistanceSimilarityQuery<T>JaccardSimilarityDistance. instantiate(Relation<T> relation)
-
Uses of Relation in elki.distance.subspace
Methods in elki.distance.subspace with parameters of type Relation Modifier and Type Method Description <T extends NumberVector>
SpatialPrimitiveDistanceQuery<T>SubspaceLPNormDistance. instantiate(Relation<T> database)
-
Uses of Relation in elki.evaluation.clustering.internal
Methods in elki.evaluation.clustering.internal with parameters of type Relation Modifier and Type Method Description static int
SimplifiedSilhouette. centroids(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)
Compute centroids.protected double[]
ConcordantPairsGammaTau. computeWithinDistances(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, int withinPairs)
double
CIndex. evaluateClustering(Relation<? extends O> rel, DistanceQuery<O> dq, Clustering<?> c)
Evaluate a single clustering.double
ClusterRadius. evaluateClustering(Database db, Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
ConcordantPairsGammaTau. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
DaviesBouldinIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
DBCV. evaluateClustering(Relation<O> relation, Clustering<?> cl)
Evaluate a single clustering.double
PBMIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
Silhouette. evaluateClustering(Relation<O> rel, DistanceQuery<O> dq, Clustering<?> c)
Evaluate a single clustering.double
SimplifiedSilhouette. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
SquaredErrors. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.double
VarianceRatioCriterion. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.static int
VarianceRatioCriterion. globalCentroid(Centroid overallCentroid, Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)
Update the global centroid.protected void
CIndex. processSingleton(Cluster<?> cluster, Relation<? extends O> rel, DistanceQuery<O> dq, DoubleHeap maxDists, DoubleHeap minDists, int w)
double[]
DaviesBouldinIndex. withinGroupDistances(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids)
-
Uses of Relation in elki.evaluation.similaritymatrix
Fields in elki.evaluation.similaritymatrix declared as Relation Modifier and Type Field Description (package private) Relation<?>
ComputeSimilarityMatrixImage.SimilarityMatrix. relation
The databaseMethods in elki.evaluation.similaritymatrix that return Relation Modifier and Type Method Description Relation<?>
ComputeSimilarityMatrixImage.SimilarityMatrix. getRelation()
Get the relationMethods in elki.evaluation.similaritymatrix with parameters of type Relation Modifier and Type Method Description private ComputeSimilarityMatrixImage.SimilarityMatrix
ComputeSimilarityMatrixImage. computeSimilarityMatrixImage(Relation<O> relation, DBIDIter iter)
Compute the actual similarity image.Constructors in elki.evaluation.similaritymatrix with parameters of type Relation Constructor Description SimilarityMatrix(java.awt.image.RenderedImage img, Relation<?> relation, ArrayDBIDs ids)
Constructor -
Uses of Relation in elki.index
Fields in elki.index declared as Relation Modifier and Type Field Description protected Relation<O>
AbstractRefiningIndex. relation
The representation we are bound to.Methods in elki.index with parameters of type Relation Modifier and Type Method Description Index
IndexFactory. instantiate(Relation<V> relation)
Sets the database in the distance function of this index (if existing).Constructors in elki.index with parameters of type Relation Constructor Description AbstractRefiningIndex(Relation<O> relation)
Constructor. -
Uses of Relation in elki.index.distancematrix
Fields in elki.index.distancematrix declared as Relation Modifier and Type Field Description protected Relation<O>
PrecomputedSimilarityMatrix. relation
The representation we are bound to.Fields in elki.index.distancematrix with type parameters of type Relation Modifier and Type Field Description protected java.lang.ref.WeakReference<Relation<O>>
PrecomputedDistanceMatrix. refrelation
Data relation.Methods in elki.index.distancematrix that return Relation Modifier and Type Method Description Relation<? extends O>
PrecomputedDistanceMatrix.PrecomputedDistanceQuery. getRelation()
Relation<? extends O>
PrecomputedSimilarityMatrix.PrecomputedSimilarityQuery. getRelation()
Methods in elki.index.distancematrix with parameters of type Relation Modifier and Type Method Description PrecomputedDistanceMatrix<O>
PrecomputedDistanceMatrix.Factory. instantiate(Relation<O> relation)
PrecomputedSimilarityMatrix<O>
PrecomputedSimilarityMatrix.Factory. instantiate(Relation<O> relation)
Constructors in elki.index.distancematrix with parameters of type Relation Constructor Description PrecomputedDistanceMatrix(Relation<O> relation, DBIDRange range, Distance<? super O> distance)
Constructor.PrecomputedSimilarityMatrix(Relation<O> relation, Similarity<? super O> similarityFunction)
Constructor. -
Uses of Relation in elki.index.idistance
Methods in elki.index.idistance with parameters of type Relation Modifier and Type Method Description InMemoryIDistanceIndex<V>
InMemoryIDistanceIndex.Factory. instantiate(Relation<V> relation)
Constructors in elki.index.idistance with parameters of type Relation Constructor Description InMemoryIDistanceIndex(Relation<O> relation, DistanceQuery<O> distance, KMedoidsInitialization<O> initialization, int numref)
Constructor. -
Uses of Relation in elki.index.invertedlist
Fields in elki.index.invertedlist declared as Relation Modifier and Type Field Description protected Relation<V>
InMemoryInvertedIndex. relation
The representation we are bound to.Methods in elki.index.invertedlist with parameters of type Relation Modifier and Type Method Description InMemoryInvertedIndex<V>
InMemoryInvertedIndex.Factory. instantiate(Relation<V> relation)
Constructors in elki.index.invertedlist with parameters of type Relation Constructor Description InMemoryInvertedIndex(Relation<V> relation)
Constructor. -
Uses of Relation in elki.index.laesa
Fields in elki.index.laesa declared as Relation Modifier and Type Field Description (package private) Relation<O>
LAESA. relation
Relation indexed.Methods in elki.index.laesa with parameters of type Relation Modifier and Type Method Description LAESA<O>
LAESA.Factory. instantiate(Relation<O> relation)
Constructors in elki.index.laesa with parameters of type Relation Constructor Description LAESA(Relation<O> relation, Distance<? super O> distance, int m, int k, RandomFactory rng)
Constructor. -
Uses of Relation in elki.index.lsh
Methods in elki.index.lsh with parameters of type Relation Modifier and Type Method Description InMemoryLSHIndex.Instance
InMemoryLSHIndex. instantiate(Relation<V> relation)
Constructors in elki.index.lsh with parameters of type Relation Constructor Description Instance(Relation<V> relation, java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super V>> hashfunctions, int numberOfBuckets)
Constructor. -
Uses of Relation in elki.index.lsh.hashfamilies
Methods in elki.index.lsh.hashfamilies with parameters of type Relation Modifier and Type Method Description java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>
AbstractProjectedHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l)
java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>
CosineHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l)
java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super V>>
LocalitySensitiveHashFunctionFamily. generateHashFunctions(Relation<? extends V> relation, int l)
Generate hash functions for the given relation. -
Uses of Relation in elki.index.preprocessed.fastoptics
Fields in elki.index.preprocessed.fastoptics declared as Relation Modifier and Type Field Description (package private) Relation<? extends NumberVector>
RandomProjectedNeighborsAndDensities. points
entire point setMethods in elki.index.preprocessed.fastoptics with parameters of type Relation Modifier and Type Method Description void
RandomProjectedNeighborsAndDensities. computeSetsBounds(Relation<? extends NumberVector> points, int minSplitSize, DBIDs ptList)
Create random projections, project points and put points into sets of size about minSplitSize/2 -
Uses of Relation in elki.index.preprocessed.knn
Fields in elki.index.preprocessed.knn declared as Relation Modifier and Type Field Description protected Relation<O>
AbstractMaterializeKNNPreprocessor. relation
The relation we are bound to.protected Relation<O>
NaiveProjectedKNNPreprocessor. relation
The representation we are bound to.protected Relation<O>
SpacefillingKNNPreprocessor. relation
The representation we are bound to.Methods in elki.index.preprocessed.knn with parameters of type Relation Modifier and Type Method Description private MetricalIndexTree<O,N,E>
MetricalIndexApproximationMaterializeKNNPreprocessor. getMetricalIndex(Relation<? extends O> relation)
Do some (limited) type checking, then cast the database into a spatial database.protected AbstractRStarTree<?,SpatialEntry,?>
SpatialApproximationMaterializeKNNPreprocessor. getSpatialIndex(Relation<O> relation)
abstract AbstractMaterializeKNNPreprocessor<O>
AbstractMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)
CachedDoubleDistanceKNNPreprocessor<O>
CachedDoubleDistanceKNNPreprocessor.Factory. instantiate(Relation<O> relation)
KNNJoinMaterializeKNNPreprocessor<O>
KNNJoinMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)
MaterializeKNNAndRKNNPreprocessor<O>
MaterializeKNNAndRKNNPreprocessor.Factory. instantiate(Relation<O> relation)
MaterializeKNNPreprocessor<O>
MaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)
MetricalIndexApproximationMaterializeKNNPreprocessor<O,N,E>
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)
NaiveProjectedKNNPreprocessor<V>
NaiveProjectedKNNPreprocessor.Factory. instantiate(Relation<V> relation)
NNDescent<O>
NNDescent.Factory. instantiate(Relation<O> relation)
PartitionApproximationMaterializeKNNPreprocessor<O>
PartitionApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)
RandomSampleKNNPreprocessor<O>
RandomSampleKNNPreprocessor.Factory. instantiate(Relation<O> relation)
SpacefillingKNNPreprocessor<V>
SpacefillingKNNPreprocessor.Factory. instantiate(Relation<V> relation)
SpacefillingMaterializeKNNPreprocessor<V>
SpacefillingMaterializeKNNPreprocessor.Factory. instantiate(Relation<V> relation)
SpatialApproximationMaterializeKNNPreprocessor<NumberVector>
SpatialApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<NumberVector> relation)
Constructors in elki.index.preprocessed.knn with parameters of type Relation Constructor Description AbstractMaterializeKNNPreprocessor(Relation<O> relation, DistanceQuery<O> distanceQuery, int k)
Constructor.AbstractMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)
Constructor.CachedDoubleDistanceKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, java.nio.file.Path file)
Constructor.KNNJoinMaterializeKNNPreprocessor(Relation<V> relation, Distance<? super V> distance, int k)
Constructor.MaterializeKNNAndRKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)
Constructor.MaterializeKNNPreprocessor(Relation<O> relation, DistanceQuery<O> distanceQuery, int k, boolean noopt)
Constructor with preprocessing step.MaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)
Constructor with preprocessing step.MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)
ConstructorNaiveProjectedKNNPreprocessor(Relation<O> relation, double window, int projections, RandomProjectionFamily proj, java.util.Random random)
Constructor.NNDescent(Relation<O> relation, Distance<? super O> distance, int k, RandomFactory rnd, double delta, double rho, boolean noInitialNeighbors, int iterations)
Constructor.PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, int partitions, RandomFactory rnd)
ConstructorRandomSampleKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, double share, RandomFactory rnd)
Constructor.SpacefillingKNNPreprocessor(Relation<O> relation, java.util.List<? extends SpatialSorter> curvegen, double window, int variants, int odim, RandomProjectionFamily proj, java.util.Random random)
Constructor.SpacefillingMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, java.util.List<? extends SpatialSorter> curvegen, double window, int variants, java.util.Random random)
Constructor.SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)
Constructor -
Uses of Relation in elki.index.preprocessed.snn
Fields in elki.index.preprocessed.snn declared as Relation Modifier and Type Field Description protected Relation<O>
SharedNearestNeighborPreprocessor. relation
Relation to use.Methods in elki.index.preprocessed.snn with parameters of type Relation Modifier and Type Method Description SharedNearestNeighborIndex<O>
SharedNearestNeighborIndex.Factory. instantiate(Relation<O> database)
Instantiate the index for a given database.SharedNearestNeighborPreprocessor<O>
SharedNearestNeighborPreprocessor.Factory. instantiate(Relation<O> relation)
Constructors in elki.index.preprocessed.snn with parameters of type Relation Constructor Description SharedNearestNeighborPreprocessor(Relation<O> relation, int numberOfNeighbors, Distance<O> distance)
Constructor. -
Uses of Relation in elki.index.projected
Fields in elki.index.projected declared as Relation Modifier and Type Field Description (package private) Relation<? extends O>
ProjectedIndex. relation
The relation we predend to index.(package private) Relation<I>
ProjectedIndex. view
The view that we really index.Methods in elki.index.projected with parameters of type Relation Modifier and Type Method Description ProjectedIndex<O,O>
LatLngAsECEFIndex.Factory. instantiate(Relation<O> relation)
ProjectedIndex<O,O>
LngLatAsECEFIndex.Factory. instantiate(Relation<O> relation)
ProjectedIndex<O,I>
ProjectedIndex.Factory. instantiate(Relation<O> relation)
Constructors in elki.index.projected with parameters of type Relation Constructor Description LatLngAsECEFIndex(Relation<? extends O> relation, Projection<O,O> proj, Relation<O> view, Index inner, boolean norefine)
Constructor.LngLatAsECEFIndex(Relation<? extends O> relation, Projection<O,O> proj, Relation<O> view, Index inner, boolean norefine)
Constructor.ProjectedIndex(Relation<? extends O> relation, Projection<O,I> proj, Relation<I> view, Index inner, boolean norefine, double kmulti)
Constructor. -
Uses of Relation in elki.index.tree.betula
Methods in elki.index.tree.betula with parameters of type Relation Modifier and Type Method Description CFTree<L>
CFTree.Factory. newTree(DBIDs ids, Relation<? extends NumberVector> relation, boolean storeIds)
Make a new tree. -
Uses of Relation in elki.index.tree.metrical.covertree
Fields in elki.index.tree.metrical.covertree declared as Relation Modifier and Type Field Description protected Relation<O>
AbstractCoverTree. relation
The representation we are bound to.Methods in elki.index.tree.metrical.covertree with parameters of type Relation Modifier and Type Method Description CoverTree<O>
CoverTree.Factory. instantiate(Relation<O> relation)
SimplifiedCoverTree<O>
SimplifiedCoverTree.Factory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.metrical.covertree with parameters of type Relation Constructor Description AbstractCoverTree(Relation<O> relation, Distance<? super O> distance, double expansion, int truncate)
Constructor.CoverTree(Relation<O> relation, Distance<? super O> distance, double expansion, int truncate)
Constructor.CoverTree(Relation<O> relation, Distance<? super O> distance, int truncate)
Constructor.SimplifiedCoverTree(Relation<O> relation, Distance<? super O> distance, double expansion, int truncate)
Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees
Constructors in elki.index.tree.metrical.mtreevariants.mktrees with parameters of type Relation Constructor Description AbstractMkTree(Relation<O> relation, PageFile<N> pagefile, S settings)
Constructor.AbstractMkTreeUnified(Relation<O> relation, PageFile<N> pagefile, S settings)
Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mkapp
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mkapp declared as Relation Modifier and Type Field Description private Relation<O>
MkAppTreeIndex. relation
The relation indexedMethods in elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation Modifier and Type Method Description MkAppTreeIndex<O>
MkAppTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation Constructor Description MkAppTree(Relation<O> relation, PageFile<MkAppTreeNode<O>> pageFile, MkAppTreeSettings<O> settings)
Constructor.MkAppTreeIndex(Relation<O> relation, PageFile<MkAppTreeNode<O>> pageFile, MkAppTreeSettings<O> settings)
Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mkcop
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mkcop declared as Relation Modifier and Type Field Description private Relation<O>
MkCoPTreeIndex. relation
Relation indexedMethods in elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation Modifier and Type Method Description MkCoPTreeIndex<O>
MkCopTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation Constructor Description MkCoPTree(Relation<O> relation, PageFile<MkCoPTreeNode<O>> pagefile, MkTreeSettings<O,MkCoPTreeNode<O>,MkCoPEntry> settings)
Constructor.MkCoPTreeIndex(Relation<O> relation, PageFile<MkCoPTreeNode<O>> pageFile, MkTreeSettings<O,MkCoPTreeNode<O>,MkCoPEntry> settings)
Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mkmax
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mkmax declared as Relation Modifier and Type Field Description private Relation<O>
MkMaxTreeIndex. relation
Relation indexed.Methods in elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation Modifier and Type Method Description MkMaxTreeIndex<O>
MkMaxTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation Constructor Description MkMaxTree(Relation<O> relation, PageFile<MkMaxTreeNode<O>> pagefile, MkTreeSettings<O,MkMaxTreeNode<O>,MkMaxEntry> settings)
Constructor.MkMaxTreeIndex(Relation<O> relation, PageFile<MkMaxTreeNode<O>> pagefile, MkTreeSettings<O,MkMaxTreeNode<O>,MkMaxEntry> settings)
Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mktab
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mktab declared as Relation Modifier and Type Field Description private Relation<O>
MkTabTreeIndex. relation
The relation indexed.Methods in elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation Modifier and Type Method Description MkTabTreeIndex<O>
MkTabTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation Constructor Description MkTabTree(Relation<O> relation, PageFile<MkTabTreeNode<O>> pagefile, MkTreeSettings<O,MkTabTreeNode<O>,MkTabEntry> settings)
Constructor.MkTabTreeIndex(Relation<O> relation, PageFile<MkTabTreeNode<O>> pagefile, MkTreeSettings<O,MkTabTreeNode<O>,MkTabEntry> settings)
Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mtree
Fields in elki.index.tree.metrical.mtreevariants.mtree declared as Relation Modifier and Type Field Description private Relation<O>
MTreeIndex. relation
The relation indexed.Methods in elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation Modifier and Type Method Description MTreeIndex<O>
MTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation Constructor Description MTreeIndex(Relation<O> relation, PageFile<MTreeNode<O>> pagefile, MTreeSettings<O,MTreeNode<O>,MTreeEntry> settings)
Constructor. -
Uses of Relation in elki.index.tree.metrical.vptree
Fields in elki.index.tree.metrical.vptree declared as Relation Modifier and Type Field Description protected Relation<O>
GNAT. relation
The representation we are bound to.protected Relation<O>
VPTree. relation
The representation we are bound to.Methods in elki.index.tree.metrical.vptree with parameters of type Relation Modifier and Type Method Description GNAT<O>
GNAT.Factory. instantiate(Relation<O> relation)
VPTree<O>
VPTree.Factory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.metrical.vptree with parameters of type Relation Constructor Description GNAT(Relation<O> relation, Distance<? super O> distance, RandomFactory random, int numberVPs)
Constructor.VPTree(Relation<O> relation, Distance<? super O> distance, int leafsize)
Constructor with default values, used by EmpiricalQueryOptimizerVPTree(Relation<O> relation, Distance<? super O> distance, RandomFactory random, int sampleSize, int truncate)
Constructor. -
Uses of Relation in elki.index.tree.spatial.kd
Classes in elki.index.tree.spatial.kd that implement Relation Modifier and Type Class Description private class
MemoryKDTree.CountingRelation
Proxy to count accesses.Fields in elki.index.tree.spatial.kd declared as Relation Modifier and Type Field Description protected Relation<O>
MemoryKDTree. relation
The representation we are bound to.protected Relation<O>
MinimalisticMemoryKDTree. relation
The representation we are bound to.protected Relation<O>
SmallMemoryKDTree. relation
The representation we are bound to.Methods in elki.index.tree.spatial.kd with parameters of type Relation Modifier and Type Method Description java.lang.Object
MemoryKDTree. buildTree(Relation<? extends NumberVector> relation, int left, int right, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, VectorUtil.SortDBIDsBySingleDimension comp)
Build the k-d tree.MemoryKDTree<O>
MemoryKDTree.Factory. instantiate(Relation<O> relation)
MinimalisticMemoryKDTree<O>
MinimalisticMemoryKDTree.Factory. instantiate(Relation<O> relation)
SmallMemoryKDTree<O>
SmallMemoryKDTree.Factory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.spatial.kd with parameters of type Relation Constructor Description CountSortAccesses(Counter objaccess, Relation<? extends NumberVector> data)
Constructor.MemoryKDTree(Relation<O> relation, int leafsize)
Constructor with default split (used by EmpiricalQueryOptimizer).MemoryKDTree(Relation<O> relation, SplitStrategy split, int leafsize)
Constructor.MinimalisticMemoryKDTree(Relation<O> relation, int leafsize)
Constructor.SmallMemoryKDTree(Relation<O> relation, int leafsize)
Constructor. -
Uses of Relation in elki.index.tree.spatial.kd.split
Methods in elki.index.tree.spatial.kd.split with parameters of type Relation Modifier and Type Method Description SplitStrategy.Info
BoundedMidpointSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
SplitStrategy.Info
LeastOneDimSSQSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
SplitStrategy.Info
LeastSSQSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
SplitStrategy.Info
MeanVarianceSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
SplitStrategy.Info
MedianSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
SplitStrategy.Info
MedianVarianceSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
SplitStrategy.Info
MidpointSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
SplitStrategy.Info
SplitStrategy. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)
Build the k-d-tree using midpoint splitting.(package private) static double[]
SplitStrategy.Util. minmaxRange(int dims, Relation<? extends NumberVector> relation, DBIDArrayIter iter, int left, int right)
Find the minimum and maximum in each dimension of a range of values.(package private) static int
SplitStrategy.Util. pivot(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int dim, int left, int right, double mid)
Pivot an interval.(package private) static double[]
SplitStrategy.Util. sumvar(Relation<? extends NumberVector> relation, int dims, DBIDArrayMIter iter, int left, int right)
Compute the sum and sum-of-squares (for variance). -
Uses of Relation in elki.index.tree.spatial.rstarvariants.deliclu
Fields in elki.index.tree.spatial.rstarvariants.deliclu declared as Relation Modifier and Type Field Description private Relation<O>
DeLiCluTreeIndex. relation
The relation we index.Methods in elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation Modifier and Type Method Description DeLiCluTreeIndex<O>
DeLiCluTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation Constructor Description DeLiCluTreeIndex(Relation<O> relation, PageFile<DeLiCluNode> pagefile, RTreeSettings settings)
Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.flat
Fields in elki.index.tree.spatial.rstarvariants.flat declared as Relation Modifier and Type Field Description private Relation<O>
FlatRStarTreeIndex. relation
The relation we indexMethods in elki.index.tree.spatial.rstarvariants.flat with parameters of type Relation Modifier and Type Method Description FlatRStarTreeIndex<O>
FlatRStarTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.spatial.rstarvariants.flat with parameters of type Relation Constructor Description FlatRStarTreeIndex(Relation<O> relation, PageFile<FlatRStarTreeNode> pagefile, RTreeSettings settings)
Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.query
Fields in elki.index.tree.spatial.rstarvariants.query declared as Relation Modifier and Type Field Description protected Relation<? extends O>
EuclideanRStarTreeDistancePrioritySearcher. relation
Relation we query.protected Relation<? extends O>
RStarTreeDistancePrioritySearcher. relation
Relation we query.protected Relation<? extends O>
RStarTreeKNNSearcher. relation
Relation we query.protected Relation<? extends O>
RStarTreeRangeSearcher. relation
Relation we query.Constructors in elki.index.tree.spatial.rstarvariants.query with parameters of type Relation Constructor Description EuclideanRStarTreeDistancePrioritySearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation)
Constructor.EuclideanRStarTreeKNNQuery(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation)
Constructor.EuclideanRStarTreeRangeQuery(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation)
Constructor.RStarTreeDistancePrioritySearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distance)
Constructor.RStarTreeKNNSearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distance)
Constructor.RStarTreeRangeSearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distance)
Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.rdknn
Fields in elki.index.tree.spatial.rstarvariants.rdknn declared as Relation Modifier and Type Field Description private Relation<O>
RdKNNTree. relation
The relation we query.Methods in elki.index.tree.spatial.rstarvariants.rdknn with parameters of type Relation Modifier and Type Method Description RdKNNTree<O>
RdKNNTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.spatial.rstarvariants.rdknn with parameters of type Relation Constructor Description RdKNNTree(Relation<O> relation, PageFile<RdKNNNode> pagefile, RdkNNSettings settings)
Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.rstar
Fields in elki.index.tree.spatial.rstarvariants.rstar declared as Relation Modifier and Type Field Description private Relation<O>
RStarTreeIndex. relation
RelationMethods in elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation Modifier and Type Method Description RStarTreeIndex<O>
RStarTreeFactory. instantiate(Relation<O> relation)
Constructors in elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation Constructor Description RStarTreeIndex(Relation<O> relation, PageFile<RStarTreeNode> pagefile, RTreeSettings settings)
Constructor. -
Uses of Relation in elki.index.vafile
Methods in elki.index.vafile with parameters of type Relation Modifier and Type Method Description PartialVAFile<V>
PartialVAFile.Factory. instantiate(Relation<V> relation)
VAFile<V>
VAFile.Factory. instantiate(Relation<V> relation)
void
VAFile. setPartitions(Relation<V> relation)
Initialize the data set grid by computing quantiles.Constructors in elki.index.vafile with parameters of type Relation Constructor Description DAFile(Relation<? extends NumberVector> relation, int dimension, int partitions)
Constructor.PartialVAFile(int pageSize, Relation<V> relation, int partitions)
Constructor.VAFile(int pageSize, Relation<V> relation, int partitions)
Constructor. -
Uses of Relation in elki.itemsetmining
Methods in elki.itemsetmining with parameters of type Relation Modifier and Type Method Description private FPGrowth.FPTree
FPGrowth. buildFPTree(Relation<BitVector> relation, int[] iidx, int items)
Build the actual FP-tree structure.protected java.util.List<OneItemset>
APRIORI. buildFrequentOneItemsets(Relation<? extends SparseFeatureVector<?>> relation, int dim, int needed)
Build the 1-itemsets.protected java.util.List<SparseItemset>
APRIORI. buildFrequentTwoItemsets(java.util.List<OneItemset> oneitems, Relation<BitVector> relation, int dim, int needed, DBIDs ids, ArrayModifiableDBIDs survivors)
Build the 2-itemsets.private DBIDs[]
Eclat. buildIndex(Relation<BitVector> relation, int dim, int minsupp)
private int[]
FPGrowth. countItemSupport(Relation<BitVector> relation, int dim)
Count the support of each 1-item.protected java.util.List<? extends Itemset>
APRIORI. frequentItemsets(java.util.List<? extends Itemset> candidates, Relation<BitVector> relation, int needed, DBIDs ids, ArrayModifiableDBIDs survivors, int length)
Returns the frequent BitSets out of the given BitSets with respect to the given database.protected java.util.List<SparseItemset>
APRIORI. frequentItemsetsSparse(java.util.List<SparseItemset> candidates, Relation<BitVector> relation, int needed, DBIDs ids, ArrayModifiableDBIDs survivors, int length)
Returns the frequent BitSets out of the given BitSets with respect to the given database.FrequentItemsetsResult
APRIORI. run(Relation<BitVector> relation)
Performs the APRIORI algorithm on the given database.FrequentItemsetsResult
Eclat. run(Relation<BitVector> relation)
Run the Eclat algorithmFrequentItemsetsResult
FPGrowth. run(Relation<BitVector> relation)
Run the FP-Growth algorithm -
Uses of Relation in elki.math
Methods in elki.math with parameters of type Relation Modifier and Type Method Description static MeanVariance[]
MeanVariance. of(Relation<? extends NumberVector> relation)
Compute the variances of a relation. -
Uses of Relation in elki.math.linearalgebra
Methods in elki.math.linearalgebra with parameters of type Relation Modifier and Type Method Description <F extends NumberVector>
FCovarianceMatrix. getMeanVector(Relation<? extends F> relation)
Get the mean as vector.static Centroid
Centroid. make(Relation<? extends NumberVector> relation, DBIDs ids)
Static constructor from an existing relation.static CovarianceMatrix
CovarianceMatrix. make(Relation<? extends NumberVector> relation)
Static Constructor from a full relation.static CovarianceMatrix
CovarianceMatrix. make(Relation<? extends NumberVector> relation, DBIDs ids)
Static Constructor from a full relation.static ProjectedCentroid
ProjectedCentroid. make(long[] dims, Relation<? extends NumberVector> relation)
Static Constructor from a relation.static ProjectedCentroid
ProjectedCentroid. make(long[] dims, Relation<? extends NumberVector> relation, DBIDs ids)
Static Constructor from a relation. -
Uses of Relation in elki.math.linearalgebra.pca
Methods in elki.math.linearalgebra.pca with parameters of type Relation Modifier and Type Method Description PCAResult
AutotuningPCA. processIds(DBIDs ids, Relation<? extends NumberVector> database)
double[][]
CovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> database)
Compute covariance matrix for a collection of database IDs.PCAResult
PCARunner. processIds(DBIDs ids, Relation<? extends NumberVector> database)
Run PCA on a collection of database IDs.double[][]
RANSACCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> relation)
double[][]
StandardCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs.double[][]
WeightedCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> relation)
Weighted Covariance Matrix for a set of IDs.PCAResult
AutotuningPCA. processQueryResult(DoubleDBIDList results, Relation<? extends NumberVector> database)
PCAResult
PCARunner. processQueryResult(DoubleDBIDList results, Relation<? extends NumberVector> database)
Run PCA on a QueryResult Collection.default double[][]
CovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database)
Compute covariance matrix for a QueryResult Collection.default double[][]
CovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database, int k)
Compute covariance matrix for a QueryResult collection.double[][]
WeightedCovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database, int k)
Compute Covariance Matrix for a QueryResult Collection.default double[][]
CovarianceMatrixBuilder. processRelation(Relation<? extends NumberVector> relation)
Compute covariance matrix for a complete relation. -
Uses of Relation in elki.math.scales
Methods in elki.math.scales with parameters of type Relation Modifier and Type Method Description static LinearScale[]
Scales. calcScales(Relation<? extends SpatialComparable> rel)
Compute a linear scale for each dimension. -
Uses of Relation in elki.math.spacefillingcurves
Constructors in elki.math.spacefillingcurves with parameters of type Relation Constructor Description ZCurveTransformer(Relation<? extends NumberVector> relation, DBIDs ids)
Constructor. -
Uses of Relation in elki.math.statistics.intrinsicdimensionality
Methods in elki.math.statistics.intrinsicdimensionality with parameters of type Relation Modifier and Type Method Description protected double
LPCAEstimator. estimate(DBIDs ids, Relation<? extends NumberVector> relation)
Returns an ID estimate based on the specified filter for the given point DBID set and relation. -
Uses of Relation in elki.outlier
Methods in elki.outlier with parameters of type Relation Modifier and Type Method Description private static void
COP. computeCentroid(double[] centroid, Relation<? extends NumberVector> relation, DBIDs ids)
Recompute the centroid of a set.private double
GaussianUniformMixture. loglikelihoodNormal(DBIDs objids, SetDBIDs anomalous, CovarianceMatrix builder, Relation<? extends NumberVector> relation)
Computes the loglikelihood of all normal objects.OutlierResult
COP. run(Relation<V> relation)
Process a single relation.OutlierResult
DWOF. run(Relation<O> relation)
Performs the Generalized DWOF_SCORE algorithm on the given database by calling all the other methods in the proper order.OutlierResult
GaussianModel. run(Relation<? extends NumberVector> relation)
Run the algorithmOutlierResult
GaussianUniformMixture. run(Relation<? extends NumberVector> relation)
Run the algorithmOutlierResult
OPTICSOF. run(Relation<O> relation)
Perform OPTICS-based outlier detection.OutlierResult
SimpleCOP. run(Relation<V> relation)
Run Simple COP outlier detection. -
Uses of Relation in elki.outlier.anglebased
Methods in elki.outlier.anglebased with parameters of type Relation Modifier and Type Method Description private void
FastABOD. fastABOD(Relation<V> relation, DBIDs ids, WritableDoubleDataStore abodvalues, DoubleMinMax minmaxabod)
Full kernel-based version.private boolean
FastABOD. kNNABOD(Relation<V> relation, DBIDs ids, WritableDoubleDataStore abodvalues, DoubleMinMax minmaxabod)
Simpler kNN based, can use more indexing.OutlierResult
ABOD. run(Relation<V> relation)
Run ABOD on the data set.OutlierResult
FastABOD. run(Relation<V> relation)
Run Fast-ABOD on the data set.OutlierResult
LBABOD. run(Relation<V> relation)
Run LB-ABOD on the data set. -
Uses of Relation in elki.outlier.clustering
Methods in elki.outlier.clustering with parameters of type Relation Modifier and Type Method Description private void
CBLOF. computeCBLOFs(Relation<O> relation, WritableDoubleDataStore cblofs, DoubleMinMax cblofMinMax, java.util.List<? extends Cluster<MeanModel>> largeClusters, java.util.List<? extends Cluster<MeanModel>> smallClusters)
Compute the CBLOF scores for all the data.private void
KMeansOutlierDetection. distanceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Simple distance-based scoring function.private int
CBLOF. getClusterBoundary(Relation<O> relation, java.util.List<? extends Cluster<MeanModel>> clusters)
Compute the boundary index separating the large cluster from the small cluster.OutlierResult
CBLOF. run(Database database, Relation<O> relation)
Run CBLOF.OutlierResult
DBSCANOutlierDetection. run(Database db, Relation<? extends NumberVector> relation)
Runs the algorithm in the timed evaluation part.OutlierResult
EMOutlier. run(Relation<V> relation)
Runs the algorithm in the timed evaluation part.OutlierResult
GLOSH. run(Database db, Relation<? extends NumberVector> relation)
OutlierResult
KMeansOutlierDetection. run(Relation<O> relation)
Run the outlier detection algorithm.private void
KMeansOutlierDetection. singletonsScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Distance-based scoring that takes singletons into account.private void
KMeansOutlierDetection. varianceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)
Variance-based scoring function. -
Uses of Relation in elki.outlier.density
Fields in elki.outlier.density declared as Relation Modifier and Type Field Description (package private) Relation<? extends NumberVector>
IsolationForest.ForestBuilder. relation
Data relation to useMethods in elki.outlier.density with parameters of type Relation Modifier and Type Method Description private java.util.List<HySortOD.Hypercube>
HySortOD. getSortedHypercubes(Relation<? extends NumberVector> relation)
Create and sort hypercubes considering their coordinates.OutlierResult
HySortOD. run(Database db, Relation<? extends NumberVector> relation)
OutlierResult
IsolationForest. run(Relation<? extends NumberVector> relation)
Run the isolation forest algorithm.Constructors in elki.outlier.density with parameters of type Relation Constructor Description ForestBuilder(Relation<? extends NumberVector> relation, int subsampleSize, java.util.Random random)
Constructor for the tree builder. -
Uses of Relation in elki.outlier.distance
Fields in elki.outlier.distance declared as Relation Modifier and Type Field Description (package private) Relation<O>
HilOut.HilbertFeatures. relation
Relation indexedMethods in elki.outlier.distance with parameters of type Relation Modifier and Type Method Description protected DoubleDBIDList
ReferenceBasedOutlierDetection. computeDistanceVector(NumberVector refPoint, Relation<? extends NumberVector> database, PrimitiveDistanceQuery<? super NumberVector> distFunc)
Computes for each object the distance to one reference point.protected abstract DoubleDataStore
AbstractDBOutlier. computeOutlierScores(Relation<O> relation, double d)
computes an outlier score for each object of the database.protected DoubleDataStore
DBOutlierDetection. computeOutlierScores(Relation<O> relation, double d)
protected DoubleDataStore
DBOutlierScore. computeOutlierScores(Relation<O> relation, double d)
OutlierResult
AbstractDBOutlier. run(Relation<O> relation)
Runs the algorithm in the timed evaluation part.OutlierResult
HilOut. run(Relation<O> relation)
Run the HilOut algorithm.OutlierResult
KNNDD. run(Relation<O> relation)
Runs the algorithm in the timed evaluation part.OutlierResult
KNNOutlier. run(Relation<O> relation)
Runs the algorithm in the timed evaluation part.OutlierResult
KNNSOS. run(Relation<O> relation)
Run the algorithm.OutlierResult
KNNWeightOutlier. run(Relation<O> relation)
Runs the algorithm in the timed evaluation part.OutlierResult
LocalIsolationCoefficient. run(Relation<O> relation)
Runs the algorithm in the timed evaluation part.OutlierResult
ODIN. run(Relation<O> relation)
Run the ODIN algorithmOutlierResult
ReferenceBasedOutlierDetection. run(Relation<? extends NumberVector> relation)
Run the algorithm on the given relation.OutlierResult
SOS. run(Relation<O> relation)
Run the algorithm.Constructors in elki.outlier.distance with parameters of type Relation Constructor Description HilbertFeatures(Relation<O> relation, double[] min, double diameter)
Constructor. -
Uses of Relation in elki.outlier.distance.parallel
Methods in elki.outlier.distance.parallel with parameters of type Relation Modifier and Type Method Description OutlierResult
ParallelKNNOutlier. run(Relation<O> relation)
Run the parallel kNN outlier detector.OutlierResult
ParallelKNNWeightOutlier. run(Relation<O> relation)
Run the parallel kNN weight outlier detector. -
Uses of Relation in elki.outlier.intrinsic
Methods in elki.outlier.intrinsic with parameters of type Relation Modifier and Type Method Description OutlierResult
IDOS. run(Relation<O> relation)
Run the algorithmOutlierResult
ISOS. run(Relation<O> relation)
Run the algorithm.OutlierResult
LID. run(Relation<O> relation)
Run the algorithm -
Uses of Relation in elki.outlier.lof
Fields in elki.outlier.lof declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>
ALOCI.ALOCIQuadTree. relation
Relation indexed.Methods in elki.outlier.lof with parameters of type Relation Modifier and Type Method Description protected void
INFLO. computeINFLO(Relation<O> relation, ModifiableDBIDs pruned, KNNSearcher<DBIDRef> knnq, WritableDataStore<ModifiableDBIDs> rNNminuskNNs, WritableDoubleDataStore inflos, DoubleMinMax inflominmax)
Compute the final INFLO scores.private void
INFLO. computeNeighborhoods(Relation<O> relation, DataStore<SetDBIDs> knns, ModifiableDBIDs pruned, WritableDataStore<ModifiableDBIDs> rNNminuskNNs)
Compute the reverse kNN minus the kNN.protected void
LoOP. computePDists(Relation<O> relation, KNNSearcher<DBIDRef> knn, WritableDoubleDataStore pdists)
Compute the probabilistic distances used by LoOP.protected double
LoOP. computePLOFs(Relation<O> relation, KNNSearcher<DBIDRef> knn, WritableDoubleDataStore pdists, WritableDoubleDataStore plofs)
Compute the LOF values, using the pdist distances.private int
KDEOS. dimensionality(Relation<O> rel)
Ugly hack to allow using this implementation without having a well-defined dimensionality.protected void
KDEOS. estimateDensities(Relation<O> rel, KNNSearcher<DBIDRef> knnq, DBIDs ids, WritableDataStore<double[]> densities)
Perform the kernel density estimation step.private Pair<Pair<KNNSearcher<DBIDRef>,KNNSearcher<DBIDRef>>,Pair<RKNNSearcher<DBIDRef>,RKNNSearcher<DBIDRef>>>
OnlineLOF. getKNNAndRkNNQueries(Relation<O> relation, StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.OutlierResult
ALOCI. run(Relation<V> relation)
Run the algorithm.OutlierResult
COF. run(Relation<O> relation)
Runs the COF algorithm on the given database.OutlierResult
FlexibleLOF. run(Relation<O> relation)
Performs the Generalized LOF algorithm on the given database by callingFlexibleLOF.doRunInTime(elki.database.ids.DBIDs, elki.database.query.knn.KNNSearcher<elki.database.ids.DBIDRef>, elki.database.query.knn.KNNSearcher<elki.database.ids.DBIDRef>, elki.logging.progress.StepProgress)
.OutlierResult
INFLO. run(Relation<O> relation)
Run the algorithmOutlierResult
KDEOS. run(Relation<O> rel)
Run the KDEOS outlier detection algorithm.OutlierResult
LDF. run(Relation<O> relation)
Run the naive kernel density LOF algorithm.OutlierResult
LDOF. run(Relation<O> relation)
Run the algorithmOutlierResult
LOCI. run(Relation<O> relation)
Run the algorithmOutlierResult
LOF. run(Relation<O> relation)
Runs the LOF algorithm on the given database.OutlierResult
LoOP. run(Relation<O> relation)
Performs the LoOP algorithm on the given database.OutlierResult
OnlineLOF. run(Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by calling#doRunInTime(Database)
and adds aOnlineLOF.LOFKNNListener
to the preprocessors.OutlierResult
SimpleKernelDensityLOF. run(Relation<O> relation)
Run the naive kernel density LOF algorithm.OutlierResult
SimplifiedLOF. run(Relation<O> relation)
Run the Simple LOF algorithm.OutlierResult
VarianceOfVolume. run(Relation<O> relation)
Runs the VOV algorithm on the given database.Constructors in elki.outlier.lof with parameters of type Relation Constructor Description ALOCIQuadTree(double[] min, double[] max, double[] shift, int nmin, Relation<? extends NumberVector> relation)
Constructor. -
Uses of Relation in elki.outlier.lof.parallel
Methods in elki.outlier.lof.parallel with parameters of type Relation Modifier and Type Method Description OutlierResult
ParallelLOF. run(Relation<O> relation)
Run the LOF algorithm in parallel.OutlierResult
ParallelSimplifiedLOF. run(Relation<O> relation)
Run the simplified LOF algorithm. -
Uses of Relation in elki.outlier.meta
Methods in elki.outlier.meta with parameters of type Relation Modifier and Type Method Description private java.util.ArrayList<ArrayDBIDs>
HiCS. buildOneDimIndexes(Relation<? extends NumberVector> relation)
Calculates "index structures" for every attribute, i.e. sorts a ModifiableArray of every DBID in the database for every dimension and stores them in a listprivate void
HiCS. calculateContrast(Relation<? extends NumberVector> relation, HiCS.HiCSSubspace subspace, java.util.ArrayList<ArrayDBIDs> subspaceIndex, java.util.Random random)
Calculates the actual contrast of a given subspace.private java.util.Set<HiCS.HiCSSubspace>
HiCS. calculateSubspaces(Relation<? extends NumberVector> relation, java.util.ArrayList<ArrayDBIDs> subspaceIndex, java.util.Random random)
Identifies high contrast subspaces in a given full-dimensional database.OutlierResult
ExternalDoubleOutlierScore. run(Relation<?> relation)
Run the algorithm.OutlierResult
FeatureBagging. run(Relation<NumberVector> relation)
Run the algorithm on a data set.OutlierResult
HiCS. run(Relation<? extends NumberVector> relation)
Perform HiCS on a given database. -
Uses of Relation in elki.outlier.spatial
Methods in elki.outlier.spatial with parameters of type Relation Modifier and Type Method Description OutlierResult
CTLuGLSBackwardSearchAlgorithm. run(Relation<V> relationx, Relation<? extends NumberVector> relationy)
Run the algorithmOutlierResult
CTLuMeanMultipleAttributes. run(Database database, Relation<N> spatial, Relation<O> attributes)
Run the algorithmOutlierResult
CTLuMedianAlgorithm. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)
Main method.OutlierResult
CTLuMedianMultipleAttributes. run(Database database, Relation<N> spatial, Relation<O> attributes)
Run the algorithmOutlierResult
CTLuMoranScatterplotOutlier. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)
Main method.OutlierResult
CTLuRandomWalkEC. run(Relation<O> spatial, Relation<? extends NumberVector> relation)
Run the algorithm.OutlierResult
CTLuScatterplotOutlier. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)
Main method.OutlierResult
CTLuZTestOutlier. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)
Main method.OutlierResult
SLOM. run(Database database, Relation<N> spatial, Relation<O> relation)
OutlierResult
SOF. run(Database database, Relation<N> spatial, Relation<O> relation)
The main run methodOutlierResult
TrimmedMeanApproach. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)
Run the algorithm.private Pair<DBIDVar,java.lang.Double>
CTLuGLSBackwardSearchAlgorithm. singleIteration(Relation<V> relationx, Relation<? extends NumberVector> relationy)
Run a single iteration of the GLS-SOD modeling step -
Uses of Relation in elki.outlier.spatial.neighborhood
Methods in elki.outlier.spatial.neighborhood with parameters of type Relation Modifier and Type Method Description private DataStore<DBIDs>
ExtendedNeighborhood.Factory. extendNeighborhood(Database database, Relation<? extends O> relation)
Method to load the external neighbors.NeighborSetPredicate
ExtendedNeighborhood.Factory. instantiate(Database database, Relation<? extends O> relation)
NeighborSetPredicate
ExternalNeighborhood.Factory. instantiate(Database database, Relation<?> relation)
NeighborSetPredicate
NeighborSetPredicate.Factory. instantiate(Database database, Relation<? extends O> relation)
Instantiation method.NeighborSetPredicate
PrecomputedKNearestNeighborNeighborhood.Factory. instantiate(Database database, Relation<? extends O> relation)
private DataStore<DBIDs>
ExternalNeighborhood.Factory. loadNeighbors(Database database, Relation<?> relation)
Method to load the external neighbors. -
Uses of Relation in elki.outlier.spatial.neighborhood.weighted
Methods in elki.outlier.spatial.neighborhood.weighted with parameters of type Relation Modifier and Type Method Description LinearWeightedExtendedNeighborhood
LinearWeightedExtendedNeighborhood.Factory. instantiate(Database database, Relation<? extends O> relation)
UnweightedNeighborhoodAdapter
UnweightedNeighborhoodAdapter.Factory. instantiate(Database database, Relation<? extends O> relation)
WeightedNeighborSetPredicate
WeightedNeighborSetPredicate.Factory. instantiate(Database database, Relation<? extends O> relation)
Instantiation method. -
Uses of Relation in elki.outlier.subspace
Fields in elki.outlier.subspace declared as Relation Modifier and Type Field Description (package private) Relation<? extends NumberVector>
OUTRES.KernelDensityEstimator. relation
Relation to retrieve data fromMethods in elki.outlier.subspace with parameters of type Relation Modifier and Type Method Description protected java.util.ArrayList<java.util.ArrayList<DBIDs>>
AbstractAggarwalYuOutlier. buildRanges(Relation<? extends NumberVector> relation)
Grid discretization of the data:
Each attribute of data is divided into phi equi-depth ranges.
Each range contains a fraction f=1/phi of the records.private static double[]
SOD. computePerDimensionVariances(Relation<? extends NumberVector> relation, double[] center, DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center.private DBIDs
SOD. getNearestNeighbors(Relation<V> relation, SimilarityQuery<V> simQ, DBIDRef queryObject)
Get the k nearest neighbors in terms of the shared nearest neighbor distance.OutlierResult
AggarwalYuEvolutionary. run(Relation<? extends NumberVector> relation)
Performs the evolutionary algorithm on the given database.OutlierResult
AggarwalYuNaive. run(Relation<? extends NumberVector> relation)
Run the algorithm on the given relation.OutlierResult
OUTRES. run(Relation<? extends NumberVector> relation)
Main loop for OUTRESOutlierResult
SOD. run(Relation<V> relation)
Performs the SOD algorithm on the given database.Constructors in elki.outlier.subspace with parameters of type Relation Constructor Description EvolutionarySearch(Relation<? extends NumberVector> relation, java.util.ArrayList<java.util.ArrayList<DBIDs>> ranges, java.util.Random random)
Constructor.KernelDensityEstimator(Relation<? extends NumberVector> relation, double eps)
Constructor. -
Uses of Relation in elki.outlier.svm
Methods in elki.outlier.svm with parameters of type Relation Modifier and Type Method Description OutlierResult
LibSVMOneClassOutlierDetection. run(Relation<V> relation)
Run one-class SVM.OutlierResult
OCSVM. run(Relation<V> relation)
Run one-class SVM.OutlierResult
SVDD. run(Relation<V> relation)
Run one-class SVM. -
Uses of Relation in elki.outlier.trivial
Methods in elki.outlier.trivial with parameters of type Relation Modifier and Type Method Description OutlierResult
ByLabelOutlier. run(Relation<?> relation)
Run the algorithmOutlierResult
TrivialAllOutlier. run(Relation<?> relation)
Run the trivial algorithm.OutlierResult
TrivialAverageCoordinateOutlier. run(Relation<? extends NumberVector> relation)
Run the actual algorithm.OutlierResult
TrivialGeneratedOutlier. run(Relation<Model> models, Relation<NumberVector> vecs, Relation<?> labels)
Run the algorithmOutlierResult
TrivialNoOutlier. run(Relation<?> relation)
Run the trivial algorithm. -
Uses of Relation in elki.projection
Methods in elki.projection that return Relation Modifier and Type Method Description Relation<DoubleVector>
SNE. autorun(Database database)
Relation<DoubleVector>
TSNE. autorun(Database database)
Relation<DoubleVector>
BarnesHutTSNE. run(Database database, Relation<O> relation)
Relation<DoubleVector>
SNE. run(Relation<O> relation)
Perform SNE projection.Relation<DoubleVector>
TSNE. run(Relation<O> relation)
Perform tSNE projection.Methods in elki.projection with parameters of type Relation Modifier and Type Method Description <T extends O>
AffinityMatrixAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)
Compute the affinity matrix.<T extends O>
AffinityMatrixGaussianAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)
<T extends O>
AffinityMatrixIntrinsicNearestNeighborAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)
<T extends O>
AffinityMatrixNearestNeighborAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)
<T extends O>
AffinityMatrixPerplexityAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)
protected void
AbstractProjectionAlgorithm. removePreviousRelation(Relation<?> relation)
Remove the previous relation.Relation<DoubleVector>
BarnesHutTSNE. run(Database database, Relation<O> relation)
Relation<DoubleVector>
SNE. run(Relation<O> relation)
Perform SNE projection.Relation<DoubleVector>
TSNE. run(Relation<O> relation)
Perform tSNE projection. -
Uses of Relation in elki.result
Methods in elki.result that return types with arguments of type Relation Modifier and Type Method Description static java.util.List<Relation<?>>
ResultUtil. getRelations(java.lang.Object r)
Collect all Annotation results from a ResultMethods in elki.result with parameters of type Relation Modifier and Type Method Description private DoubleObjPair<Polygon>
KMLOutputHandler. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.static SamplingResult
SamplingResult. getSamplingResult(Relation<?> rel)
Get the sampling result attached to a relationstatic ScalesResult
ScalesResult. getScalesResult(Relation<? extends SpatialComparable> rel)
Get (or create) a scales result for a relation.Method parameters in elki.result with type arguments of type Relation Modifier and Type Method Description private java.lang.StringBuilder
KMLOutputHandler. makeDescription(java.util.Collection<Relation<?>> relations, DBIDRef id)
Make an HTML description.Constructors in elki.result with parameters of type Relation Constructor Description SamplingResult(Relation<?> rel)
Constructor.ScalesResult(Relation<? extends SpatialComparable> relation)
Constructor. -
Uses of Relation in elki.result.textwriter
Method parameters in elki.result.textwriter with type arguments of type Relation Modifier and Type Method Description private void
TextWriter. printObject(TextWriterStream out, Database db, DBIDRef objID, java.util.List<Relation<?>> ra)
private void
TextWriter. writeClusterResult(Database db, StreamFactory streamOpener, Clustering<Model> clustering, Cluster<Model> clus, java.util.List<Relation<?>> ra, NamingScheme naming)
private void
TextWriter. writeOrderingResult(Database db, StreamFactory streamOpener, OrderingResult or, java.util.List<Relation<?>> ra)
-
Uses of Relation in elki.similarity
Fields in elki.similarity declared as Relation Modifier and Type Field Description protected Relation<? extends DBID>
AbstractDBIDSimilarity. database
The database we work onprotected Relation<O>
AbstractIndexBasedSimilarity.Instance. relation
Relation to query.Methods in elki.similarity that return Relation Modifier and Type Method Description Relation<? extends O>
AbstractIndexBasedSimilarity.Instance. getRelation()
Methods in elki.similarity with parameters of type Relation Modifier and Type Method Description abstract <T extends O>
AbstractIndexBasedSimilarity.Instance<T,?>AbstractIndexBasedSimilarity. instantiate(Relation<T> database)
<T extends O>
FractionalSharedNearestNeighborSimilarity.Instance<T>FractionalSharedNearestNeighborSimilarity. instantiate(Relation<T> database)
<T extends O>
IndexBasedSimilarity.Instance<T,?>IndexBasedSimilarity. instantiate(Relation<T> database)
Preprocess the database to get the actual distance function.<T extends NumberVector>
SpatialPrimitiveDistanceSimilarityQuery<T>Kulczynski1Similarity. instantiate(Relation<T> database)
default <T extends O>
SimilarityQuery<T>PrimitiveSimilarity. instantiate(Relation<T> relation)
<T extends O>
SharedNearestNeighborSimilarity.Instance<T>SharedNearestNeighborSimilarity. instantiate(Relation<T> database)
<T extends O>
SimilarityQuery<T>Similarity. instantiate(Relation<T> relation)
Instantiate with a representation to get the actual similarity query.Constructors in elki.similarity with parameters of type Relation Constructor Description AbstractDBIDSimilarity(Relation<? extends DBID> database)
Constructor.Instance(Relation<O> relation, I index)
Constructor.Instance(Relation<T> database, SharedNearestNeighborIndex<T> preprocessor, FractionalSharedNearestNeighborSimilarity<? super T> similarityFunction)
Constructor.Instance(Relation<O> database, SharedNearestNeighborIndex<O> preprocessor, SharedNearestNeighborSimilarity<? super O> similarityFunction)
Constructor. -
Uses of Relation in elki.similarity.cluster
Methods in elki.similarity.cluster with parameters of type Relation Modifier and Type Method Description <T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringAdjustedRandIndexSimilarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringBCubedF1Similarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringDistanceSimilarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringFowlkesMallowsSimilarity. instantiate(Relation<T> relation)
<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringRandIndexSimilarity. instantiate(Relation<T> relation)
<T extends Cluster<?>>
DistanceSimilarityQuery<T>ClusterIntersectionSimilarity. instantiate(Relation<T> relation)
<T extends Cluster<?>>
DistanceSimilarityQuery<T>ClusterJaccardSimilarity. instantiate(Relation<T> relation)
-
Uses of Relation in elki.similarity.kernel
Methods in elki.similarity.kernel with parameters of type Relation Modifier and Type Method Description <T extends NumberVector>
DistanceSimilarityQuery<T>PolynomialKernel. instantiate(Relation<T> database)
Constructors in elki.similarity.kernel with parameters of type Relation Constructor Description KernelMatrix(SimilarityQuery<? super O> kernelFunction, Relation<? extends O> relation, DBIDs ids)
Provides a new kernel matrix.KernelMatrix(PrimitiveSimilarity<? super O> kernelFunction, Relation<? extends O> relation, DBIDs ids)
Provides a new kernel matrix. -
Uses of Relation in elki.timeseries
Methods in elki.timeseries with parameters of type Relation Modifier and Type Method Description ChangePoints
OfflineChangePointDetectionAlgorithm.Instance. run(Relation<DoubleVector> relation)
Run the change point detection algorithm on a data relation.ChangePoints
OfflineChangePointDetectionAlgorithm. run(Relation<DoubleVector> relation)
Executes multiple change point detection for given relationChangePoints
SigniTrendChangeDetection.Instance. run(Relation<NumberVector> relation)
Process a relation.ChangePoints
SigniTrendChangeDetection. run(Relation<NumberVector> relation)
Executes Signi-Trend for given relation -
Uses of Relation in elki.utilities.referencepoints
Methods in elki.utilities.referencepoints with parameters of type Relation Modifier and Type Method Description java.util.Collection<? extends NumberVector>
AxisBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)
java.util.Collection<? extends NumberVector>
FullDatabaseReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)
java.util.Collection<? extends NumberVector>
GridBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)
java.util.Collection<? extends NumberVector>
RandomGeneratedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)
java.util.Collection<? extends NumberVector>
RandomSampleReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)
java.util.Collection<? extends NumberVector>
ReferencePointsHeuristic. getReferencePoints(Relation<? extends NumberVector> db)
Get the reference points for the given database.java.util.Collection<? extends NumberVector>
StarBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)
-
Uses of Relation in elki.visualization
Fields in elki.visualization declared as Relation Modifier and Type Field Description private Relation<?>
VisualizationTask. relation
The main representationMethods in elki.visualization with type parameters of type Relation Modifier and Type Method Description <R extends Relation<?>>
RVisualizationTask. getRelation()
Constructors in elki.visualization with parameters of type Relation Constructor Description VisualizationTask(VisFactory factory, java.lang.String name, java.lang.Object result, Relation<?> relation)
Visualization task. -
Uses of Relation in elki.visualization.parallel3d
Fields in elki.visualization.parallel3d declared as Relation Modifier and Type Field Description (package private) Relation<? extends O>
OpenGL3DParallelCoordinates.Instance.Shared. rel
Relation to visualizeConstructors in elki.visualization.parallel3d with parameters of type Relation Constructor Description Instance(Relation<? extends O> rel, ProjectionParallel proj, OpenGL3DParallelCoordinates.Settings<O> settings, StylingPolicy stylepol, StyleLibrary stylelib)
Constructor. -
Uses of Relation in elki.visualization.parallel3d.layout
Methods in elki.visualization.parallel3d.layout with parameters of type Relation Modifier and Type Method Description static double[]
AbstractLayout3DPC. computeSimilarityMatrix(Dependence sim, Relation<? extends NumberVector> rel)
Compute a column-wise dependency matrix for the given relation.Layout
AbstractLayout3DPC. layout(Relation<? extends NumberVector> rel)
Layout
Layouter3DPC. layout(Relation<? extends V> rel)
Run the layouting algorithm. -
Uses of Relation in elki.visualization.projector
Fields in elki.visualization.projector declared as Relation Modifier and Type Field Description (package private) Relation<V>
HistogramProjector. rel
Relation we project.(package private) Relation<V>
ParallelPlotProjector. rel
Relation we project.(package private) Relation<V>
ScatterPlotProjector. rel
Relation we project.Methods in elki.visualization.projector that return Relation Modifier and Type Method Description Relation<V>
HistogramProjector. getRelation()
Get the relation we project.Relation<V>
ParallelPlotProjector. getRelation()
The relation we project.Relation<V>
ScatterPlotProjector. getRelation()
The relation we project.Methods in elki.visualization.projector with parameters of type Relation Modifier and Type Method Description private int
ParallelPlotFactory. dimensionality(Relation<?> rel)
private int
ScatterPlotFactory. dimensionality(Relation<?> rel)
Constructors in elki.visualization.projector with parameters of type Relation Constructor Description HistogramProjector(Relation<V> rel, int maxdim)
Constructor.ParallelPlotProjector(Relation<V> rel)
Constructor.ScatterPlotProjector(Relation<V> rel, int maxdim)
Constructor. -
Uses of Relation in elki.visualization.visualizers.histogram
Fields in elki.visualization.visualizers.histogram declared as Relation Modifier and Type Field Description private Relation<NV>
ColoredHistogramVisualizer.Instance. relation
The database we visualize -
Uses of Relation in elki.visualization.visualizers.parallel
Fields in elki.visualization.visualizers.parallel declared as Relation Modifier and Type Field Description protected Relation<NV>
AbstractParallelVisualization. relation
The representation we visualize -
Uses of Relation in elki.visualization.visualizers.scatterplot
Fields in elki.visualization.visualizers.scatterplot declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>
AbstractScatterplotVisualization. rel
The representation we visualizeprotected Relation<PolygonsObject>
PolygonVisualization.Instance. rep
The representation we visualizeprivate Relation<? extends java.lang.Number>
TooltipScoreVisualization.Instance. result
Number value to visualizeprivate Relation<?>
TooltipStringVisualization.Instance. result
Number value to visualizeMethods in elki.visualization.visualizers.scatterplot with parameters of type Relation Modifier and Type Method Description private void
TooltipScoreVisualization. addTooltips(java.lang.String nam, Relation<?> val, VisualizerContext context, ScatterPlotProjector<?> p, Relation<?> rel)
Add tooltips.private void
TooltipStringVisualization. addTooltips(java.lang.String name, Relation<?> rel, VisualizerContext context, Relation<?> rep, ScatterPlotProjector<?> p)
-
Uses of Relation in elki.visualization.visualizers.scatterplot.index
Methods in elki.visualization.visualizers.scatterplot.index with parameters of type Relation Modifier and Type Method Description static boolean
TreeSphereVisualization. canVisualize(Relation<?> rel, AbstractMTree<?,?,?,?> tree)
Test for a visualizable index in the context's database. -
Uses of Relation in elki.visualization.visualizers.scatterplot.outlier
Fields in elki.visualization.visualizers.scatterplot.outlier declared as Relation Modifier and Type Field Description protected Relation<double[]>
COPVectorVisualization.Instance. result
The outlier result to visualize -
Uses of Relation in elki.visualization.visualizers.scatterplot.uncertain
Fields in elki.visualization.visualizers.scatterplot.uncertain declared as Relation Modifier and Type Field Description protected Relation<? extends UncertainObject>
UncertainBoundingBoxVisualization.Instance. rel
The representation we visualizeprotected Relation<? extends UncertainObject>
UncertainSamplesVisualization.Instance. rel
The representation we visualize -
Uses of Relation in tutorial.clustering
Methods in tutorial.clustering with parameters of type Relation Modifier and Type Method Description protected WritableDataStore<SameSizeKMeans.Meta>
SameSizeKMeans. initializeMeta(Relation<V> relation, double[][] means)
Initialize the metadata storage.protected double[][]
SameSizeKMeans. refineResult(Relation<V> relation, double[][] means, java.util.List<ModifiableDBIDs> clusters, WritableDataStore<SameSizeKMeans.Meta> metas, ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.Clustering<SimplePrototypeModel<DBID>>
CFSFDP. run(Relation<O> relation)
Perform CFSFDP clustering.Clustering<Model>
NaiveAgglomerativeHierarchicalClustering1. run(Relation<O> relation)
Perform HACClustering<Model>
NaiveAgglomerativeHierarchicalClustering2. run(Relation<O> relation)
Perform HACClustering<Model>
NaiveAgglomerativeHierarchicalClustering3. run(Relation<O> relation)
Perform HACClusterMergeHistory
NaiveAgglomerativeHierarchicalClustering4. run(Relation<O> relation)
Run the algorithmClustering<MeanModel>
SameSizeKMeans. run(Relation<V> relation)
Run k-means with cluster size constraints.protected void
SameSizeKMeans. updateDistances(Relation<V> relation, double[][] means, WritableDataStore<SameSizeKMeans.Meta> metas, NumberVectorDistance<? super V> df)
Compute the distances of each object to all means. -
Uses of Relation in tutorial.outlier
Methods in tutorial.outlier with parameters of type Relation Modifier and Type Method Description OutlierResult
DistanceStddevOutlier. run(Relation<O> relation)
Run the outlier detection algorithmOutlierResult
ODIN. run(Relation<O> relation)
Run the ODIN algorithm
-