Uses of Interface
elki.database.relation.Relation
-
Packages that use Relation Package Description elki.algorithm Miscellaneous algorithms.elki.algorithm.statistics Statistical analysis algorithms.elki.application.benchmark Benchmarking pseudo algorithms.elki.application.greedyensemble Greedy ensembles for outlier detection.elki.classification Classification algorithms.elki.clustering Clustering algorithms.elki.clustering.affinitypropagation Affinity Propagation (AP) clustering.elki.clustering.biclustering Biclustering algorithms.elki.clustering.correlation Correlation clustering algorithms.elki.clustering.correlation.cash Helper classes for theCASHalgorithm.elki.clustering.dbscan DBSCAN and its generalizations.elki.clustering.dbscan.predicates Neighbor and core predicated for Generalized DBSCAN.elki.clustering.em Expectation-Maximization clustering algorithm for Gaussian Mixture Modeling (GMM).elki.clustering.em.models elki.clustering.hierarchical Hierarchical agglomerative clustering (HAC).elki.clustering.hierarchical.birch BIRCH clustering.elki.clustering.kcenter K-center clustering.elki.clustering.kmeans K-means clustering and variations.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmeans.parallel Parallelized implementations of k-means.elki.clustering.kmeans.quality Quality measures for k-Means results.elki.clustering.kmeans.spherical Spherical k-means clustering and variations.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.kmedoids.initialization elki.clustering.meta Meta clustering algorithms, that get their result from other clusterings or external sources.elki.clustering.onedimensional Clustering algorithms for one-dimensional data.elki.clustering.optics OPTICS family of clustering algorithms.elki.clustering.silhouette Silhouette clustering algorithms.elki.clustering.subspace Axis-parallel subspace clustering algorithms.elki.clustering.svm elki.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings.elki.clustering.uncertain Clustering algorithms for uncertain data.elki.data Basic classes for different data types, database object types and label types.elki.data.model Cluster models classes for various algorithms.elki.database ELKI database layer - loading, storing, indexing and accessing data.elki.database.query Database queries - computing distances, neighbors, similarities - API and general documentation.elki.database.query.distance Prepared queries for distances.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries.elki.database.query.range Prepared queries for ε-range queries, that return all objects within the radius ε.elki.database.query.rknn Prepared queries for reverse k nearest neighbor (rkNN) queries.elki.database.query.similarity Prepared queries for similarity functions.elki.database.relation Relations, materialized and virtual (views).elki.distance Distance functions for use within ELKI.elki.distance.adapter Distance functions deriving distances from, e.g., similarity measures.elki.distance.external Distance functions using external data sources.elki.distance.probabilistic Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence, F-divergence, χ²-divergence, etc.elki.distance.set Distance functions for binary and set type data.elki.distance.subspace Distance functions based on subspaces.elki.evaluation.clustering.internal Internal evaluation measures for clusterings.elki.evaluation.similaritymatrix Render a distance matrix to visualize a clustering-distance-combination.elki.index Index structure implementations.elki.index.distancematrix Precomputed distance matrix.elki.index.idistance iDistance is a distance based indexing technique, using a reference points embedding.elki.index.invertedlist Indexes using inverted lists.elki.index.laesa Linear Approximating and Eliminating Search Algorithm (LAESA).elki.index.lsh Locality Sensitive Hashing.elki.index.lsh.hashfamilies Hash function families for LSH.elki.index.preprocessed.fastoptics Preprocessed index used by the FastOPTICS algorithm.elki.index.preprocessed.knn Indexes providing KNN and rKNN data.elki.index.preprocessed.snn Indexes providing nearest neighbor sets.elki.index.projected Projected indexes for data.elki.index.tree.betula BETULA clustering by aggregating the data into cluster features.elki.index.tree.metrical.covertree Cover-tree variations.elki.index.tree.metrical.mtreevariants.mktrees Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries.elki.index.tree.metrical.mtreevariants.mktrees.mkapp elki.index.tree.metrical.mtreevariants.mktrees.mkcop elki.index.tree.metrical.mtreevariants.mktrees.mkmax elki.index.tree.metrical.mtreevariants.mktrees.mktab elki.index.tree.metrical.mtreevariants.mtree elki.index.tree.metrical.vptree elki.index.tree.spatial.kd K-d-tree and variants.elki.index.tree.spatial.kd.split elki.index.tree.spatial.rstarvariants.deliclu elki.index.tree.spatial.rstarvariants.flat elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries.elki.index.tree.spatial.rstarvariants.rdknn elki.index.tree.spatial.rstarvariants.rstar elki.index.vafile Vector Approximation File.elki.itemsetmining Algorithms for frequent itemset mining such as APRIORI.elki.math Mathematical operations and utilities used throughout the framework.elki.math.linearalgebra The linear algebra package provides classes and computational methods for operations on matrices and vectors.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and eigenvector processing.elki.math.scales Scales handling for plotting.elki.math.spacefillingcurves Space filling curves.elki.math.statistics.intrinsicdimensionality Methods for estimating the intrinsic dimensionality.elki.outlier Outlier detection algorithms.elki.outlier.anglebased Angle-based outlier detection algorithms.elki.outlier.clustering Clustering based outlier detection.elki.outlier.density Density-based outlier detection algorithms.elki.outlier.distance Distance-based outlier detection algorithms, such as DBOutlier and kNN.elki.outlier.distance.parallel Parallel implementations of distance-based outlier detectors.elki.outlier.intrinsic Outlier detection algorithms based on intrinsic dimensionality.elki.outlier.lof LOF family of outlier detection algorithms.elki.outlier.lof.parallel Parallelized variants of LOF.elki.outlier.meta Meta outlier detection algorithms: external scores, score rescaling.elki.outlier.spatial Spatial outlier detection algorithms.elki.outlier.spatial.neighborhood Spatial outlier neighborhood classes.elki.outlier.spatial.neighborhood.weighted Weighted neighborhood definitions.elki.outlier.subspace Subspace outlier detection methods.elki.outlier.svm Support-Vector-Machines for outlier detection.elki.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers.elki.projection Data projections (see also preprocessing filters for basic projections).elki.result Result types, representation and handling.elki.result.textwriter Text serialization (CSV, Gnuplot, Console, ...).elki.similarity Similarity functions.elki.similarity.cluster Similarity measures for comparing clusters.elki.similarity.kernel Kernel functions.elki.timeseries Algorithms for change point detection in time series.elki.utilities.referencepoints Package containing strategies to obtain reference points.elki.visualization Visualization package of ELKI.elki.visualization.parallel3d 3DPC: 3D parallel coordinate plot visualization for ELKI.elki.visualization.parallel3d.layout Layouting algorithms for 3D parallel coordinate plots.elki.visualization.projector Projectors are responsible for finding appropriate projections for data relations.elki.visualization.visualizers.histogram Visualizers based on 1D projected histograms.elki.visualization.visualizers.parallel Visualizers based on parallel coordinates.elki.visualization.visualizers.scatterplot Visualizers based on scatterplots.elki.visualization.visualizers.scatterplot.index Visualizers for index structures based on 2D projections.elki.visualization.visualizers.scatterplot.outlier Visualizers for outlier scores based on 2D projections.elki.visualization.visualizers.scatterplot.uncertain Visualizers for uncertain data.tutorial.clustering Classes from the tutorial on implementing a custom k-means variation.tutorial.outlier Tutorials on implementing outlier detection methods in ELKI. -
-
Uses of Relation in elki.algorithm
Methods in elki.algorithm that return Relation Modifier and Type Method Description Relation<KNNList>KNNJoin. autorun(Database database)Relation<KNNList>KNNJoin. run(Relation<? extends SpatialComparable> relation)Joins in the given spatial database to each object its k-nearest neighbors.Methods in elki.algorithm with parameters of type Relation Modifier and Type Method Description CorrelationAnalysisSolutionDependencyDerivator. generateModel(Relation<V> db, DBIDs ids)Runs the pca on the given set of IDs.CorrelationAnalysisSolutionDependencyDerivator. generateModel(Relation<V> relation, DBIDs ids, double[] centroid)Runs the pca on the given set of IDs and for the given centroid.CorrelationAnalysisSolutionDependencyDerivator. run(Relation<V> relation)Computes quantitatively linear dependencies among the attributes of the given database based on a linear correlation PCA.KNNDistancesSampler.KNNDistanceOrderResultKNNDistancesSampler. run(Relation<O> relation)Provides an order of the kNN-distances for all objects within the specified database.Relation<KNNList>KNNJoin. run(Relation<? extends SpatialComparable> relation)Joins in the given spatial database to each object its k-nearest neighbors.WritableDataStore<KNNList>KNNJoin. run(Relation<? extends SpatialComparable> relation, DBIDs ids)Inner run method. -
Uses of Relation in elki.algorithm.statistics
Methods in elki.algorithm.statistics with parameters of type Relation Modifier and Type Method Description private voidEvaluateRetrievalPerformance. computeDistances(ModifiableDoubleDBIDList nlist, DBIDIter query, DistanceQuery<O> distQuery, Relation<O> relation)Compute the distances to the neighbor objects.protected doubleHopkinsStatisticClusteringTendency. computeNNForRealData(KNNSearcher<DBIDRef> knnQuery, Relation<NumberVector> relation, int dim)Search nearest neighbors for real data members.voidEvaluateRetrievalPerformance.KNNEvaluator. evaluateKNN(double[] knnperf, ModifiableDoubleDBIDList nlist, Relation<?> lrelation, it.unimi.dsi.fastutil.objects.Object2IntOpenHashMap<java.lang.Object> counters, java.lang.Object label)Evaluate by simulating kNN classification for k=1...maxkprivate DoubleMinMaxDistanceStatisticsWithClasses. exactMinMax(Relation<O> relation, DistanceQuery<O> distance)Compute the exact maximum and minimum.private voidEvaluateRetrievalPerformance. findMatches(ModifiableDBIDs posn, Relation<?> lrelation, java.lang.Object label)Find all matching objects.protected voidHopkinsStatisticClusteringTendency. initializeDataExtends(Relation<NumberVector> relation, int dim, double[] min, double[] extend)Initialize the uniform sampling area.private ScalesResultAddSingleScale. run(Relation<? extends NumberVector> rel)Add scales to a single vector relation.private ScalesResultAddUniformScale. run(Relation<? extends NumberVector> rel)Add scales to a single vector relation.CollectionResult<double[]>AveragePrecisionAtK. run(Relation<O> relation, Relation<?> lrelation)Run the algorithmCollectionResult<double[]>DistanceQuantileSampler. run(Relation<O> relation)Run the distance quantile sampler.HistogramResultDistanceStatisticsWithClasses. run(Database database, Relation<O> relation)HistogramResultEvaluateRankingQuality. run(Database database, Relation<V> relation)Run the algorithm.EvaluateRetrievalPerformance.RetrievalPerformanceResultEvaluateRetrievalPerformance. run(Relation<O> relation, Relation<?> lrelation)Run the algorithmjava.lang.DoubleHopkinsStatisticClusteringTendency. run(Relation<NumberVector> relation)Compute the Hopkins statistic for a vector relation.HistogramResultRankingQualityHistogram. run(Database database, Relation<O> relation)Process a relationprivate DoubleMinMaxDistanceStatisticsWithClasses. sampleMinMax(Relation<O> relation, DistanceQuery<O> distance)Estimate minimum and maximum via sampling. -
Uses of Relation in elki.application.benchmark
Methods in elki.application.benchmark with parameters of type Relation Modifier and Type Method Description private intKNNBenchmark. run(KNNSearcher<DBIDRef> knnQuery, Relation<O> relation, Duration dur, MeanVariance mv, MeanVariance mvdist)Run with the database as query sourceprivate intPrioritySearchBenchmark. run(PrioritySearcher<DBIDRef> priQuery, Relation<O> relation, Duration dur, MeanVariance mv, MeanVariance mvdist)Run with the database as query sourceprotected intRangeQueryBenchmark. run(RangeSearcher<DBIDRef> rangeQuery, Relation<O> relation, double radius, Duration dur, MeanVariance mv)Run the algorithm, with constant radiusprotected intRangeQueryBenchmark. run(RangeSearcher<DBIDRef> rangeQuery, Relation<O> relation, Relation<NumberVector> radrel, Duration dur, MeanVariance mv)Run the algorithm, with separate radius relationprotected intRangeQueryBenchmark. run(RangeSearcher<O> rangeQuery, Relation<O> relation, DatabaseConnection queries, Duration dur, MeanVariance mv)Run the algorithm, with a separate query set. -
Uses of Relation in elki.application.greedyensemble
Methods in elki.application.greedyensemble that return Relation Modifier and Type Method Description static Relation<NumberVector>GreedyEnsembleExperiment. applyPrescaling(ScalingFunction scaling, Relation<NumberVector> relation, DBIDs skip)Prescale each vector (except when inskip) with the given scaling function.Methods in elki.application.greedyensemble with parameters of type Relation Modifier and Type Method Description static Relation<NumberVector>GreedyEnsembleExperiment. applyPrescaling(ScalingFunction scaling, Relation<NumberVector> relation, DBIDs skip)Prescale each vector (except when inskip) with the given scaling function. -
Uses of Relation in elki.classification
Fields in elki.classification declared as Relation Modifier and Type Field Description protected Relation<? extends ClassLabel>KNNClassifier. labelrepClass label representation.Methods in elki.classification with parameters of type Relation Modifier and Type Method Description voidClassifier. buildClassifier(Database database, Relation<? extends ClassLabel> classLabels)Performs the training.voidKNNClassifier. buildClassifier(Database database, Relation<? extends ClassLabel> labels)voidPriorProbabilityClassifier. buildClassifier(Database database, Relation<? extends ClassLabel> labelrep)Learns the prior probability for all classes. -
Uses of Relation in elki.clustering
Methods in elki.clustering with parameters of type Relation Modifier and Type Method Description Clustering<MeanModel>BetulaLeafPreClustering. run(Relation<NumberVector> relation)Run the clustering algorithm.Clustering<PrototypeModel<O>>CanopyPreClustering. run(Relation<O> relation)Run the canopy clustering algorithmClustering<SimplePrototypeModel<DBID>>CFSFDP. run(Relation<O> relation)Perform CFSFDP clustering.Clustering<PrototypeModel<O>>Leader. run(Relation<O> relation)Run the leader clustering algorithm.Clustering<MeanModel>NaiveMeanShiftClustering. run(Relation<V> relation)Run the mean-shift clustering algorithm.Clustering<Model>SNNClustering. run(Relation<O> relation)Perform SNN clustering -
Uses of Relation in elki.clustering.affinitypropagation
Methods in elki.clustering.affinitypropagation with parameters of type Relation Modifier and Type Method Description double[][]AffinityPropagationInitialization. getSimilarityMatrix(Relation<O> relation, ArrayDBIDs ids)Compute the initial similarity matrix.double[][]DistanceBasedInitializationWithMedian. getSimilarityMatrix(Relation<O> relation, ArrayDBIDs ids)double[][]SimilarityBasedInitializationWithMedian. getSimilarityMatrix(Relation<O> relation, ArrayDBIDs ids)Clustering<MedoidModel>AffinityPropagation. run(Relation<O> relation)Perform affinity propagation clustering. -
Uses of Relation in elki.clustering.biclustering
Fields in elki.clustering.biclustering declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>AbstractBiclustering. relationRelation we use.Methods in elki.clustering.biclustering with parameters of type Relation Modifier and Type Method Description Clustering<M>AbstractBiclustering. run(Relation<? extends NumberVector> relation)Prepares the algorithm for running on a specific database. -
Uses of Relation in elki.clustering.correlation
Fields in elki.clustering.correlation declared as Relation Modifier and Type Field Description private Relation<ParameterizationFunction>CASH. fulldatabaseThe entire relation.private Relation<? extends NumberVector>HiCO.Instance. relationData relation.Methods in elki.clustering.correlation that return Relation Modifier and Type Method Description private Relation<DoubleVector>CASH. buildDerivatorDB(Relation<ParameterizationFunction> relation, DBIDs ids)Builds a database for the derivator consisting of the ids in the specified interval.private Relation<ParameterizationFunction>CASH. preprocess(Relation<? extends NumberVector> vrel)Preprocess the dataset, precomputing the parameterization functions.Methods in elki.clustering.correlation with parameters of type Relation Modifier and Type Method Description private voidORCLUS. assign(Relation<? extends NumberVector> database, java.util.List<ORCLUS.ORCLUSCluster> clusters)Creates a partitioning of the database by assigning each object to its closest seed.private MaterializedRelation<ParameterizationFunction>CASH. buildDB(int dim, double[][] basis, DBIDs ids, Relation<ParameterizationFunction> relation)Builds a dim-1 dimensional database where the objects are projected into the specified subspace.private Relation<DoubleVector>CASH. buildDerivatorDB(Relation<ParameterizationFunction> relation, DBIDs ids)Builds a database for the derivator consisting of the ids in the specified interval.private double[]CASH. determineMinMaxDistance(Relation<ParameterizationFunction> relation, int dimensionality)Determines the minimum and maximum function value of all parameterization functions stored in the specified database.private static intCASH. dimensionality(Relation<ParameterizationFunction> relation)Get the dimensionality of a vector field.private Clustering<Model>CASH. doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.private java.util.List<java.util.List<Cluster<CorrelationModel>>>ERiC. extractCorrelationClusters(Clustering<Model> dbscanResult, Relation<? extends NumberVector> relation, int dimensionality, ERiCNeighborPredicate.Instance npred)Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.private double[][]ORCLUS. findBasis(Relation<? extends NumberVector> database, ORCLUS.ORCLUSCluster cluster, int dim)Finds the basis of the subspace of dimensionalitydimfor the specified cluster.private LMCLUS.SeparationLMCLUS. findSeparation(Relation<? extends NumberVector> relation, DBIDs currentids, int dimension, java.util.Random r)This method samples a number of linear manifolds an tries to determine which the one with the best cluster is.private voidCASH. initHeap(ObjectHeap<CASHInterval> heap, Relation<ParameterizationFunction> relation, int dim, DBIDs ids)Initializes the heap with the root intervals.private java.util.List<ORCLUS.ORCLUSCluster>ORCLUS. initialSeeds(Relation<? extends NumberVector> database, int k)Initializes the list of seeds wit a random sample of size k.private voidORCLUS. merge(Relation<? extends NumberVector> relation, java.util.List<ORCLUS.ORCLUSCluster> clusters, int k_new, int d_new, IndefiniteProgress cprogress)Reduces the number of seeds to k_newprivate Relation<ParameterizationFunction>CASH. preprocess(Relation<? extends NumberVector> vrel)Preprocess the dataset, precomputing the parameterization functions.private ORCLUS.ProjectedEnergyORCLUS. projectedEnergy(Relation<? extends NumberVector> relation, ORCLUS.ORCLUSCluster c_i, ORCLUS.ORCLUSCluster c_j, int i, int j, int dim)Computes the projected energy of the specified clusters.Clustering<Model>CASH. run(Relation<? extends NumberVector> rel)Run CASH on the relation.Clustering<DimensionModel>COPAC. run(Database database, Relation<? extends NumberVector> relation)Run the COPAC algorithm.Clustering<CorrelationModel>ERiC. run(Database database, Relation<? extends NumberVector> relation)Performs the ERiC algorithm on the given database.ClusterOrderHiCO. run(Relation<? extends NumberVector> relation)Run the HiCO algorithm.Clustering<Model>LMCLUS. run(Relation<? extends NumberVector> relation)The main LMCLUS (Linear manifold clustering algorithm) is processed in this method.Clustering<Model>ORCLUS. run(Relation<? extends NumberVector> relation)Performs the ORCLUS algorithm on the given database.private double[][]CASH. runDerivator(Relation<ParameterizationFunction> relation, int dim, CASHInterval interval, ModifiableDBIDs outids)Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.private LinearEquationSystemCASH. runDerivator(Relation<ParameterizationFunction> relation, int dimensionality, DBIDs ids)Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.private ORCLUS.ORCLUSClusterORCLUS. union(Relation<? extends NumberVector> relation, ORCLUS.ORCLUSCluster c1, ORCLUS.ORCLUSCluster c2, int dim)Returns the union of the two specified clusters.Constructors in elki.clustering.correlation with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation)Constructor. -
Uses of Relation in elki.clustering.correlation.cash
Fields in elki.clustering.correlation.cash declared as Relation Modifier and Type Field Description private Relation<ParameterizationFunction>CASHIntervalSplit. databaseThe database storing the parameterization functions.Constructors in elki.clustering.correlation.cash with parameters of type Relation Constructor Description CASHIntervalSplit(Relation<ParameterizationFunction> database, int minPts)Initializes the logger and sets the debug status to the given value. -
Uses of Relation in elki.clustering.dbscan
Methods in elki.clustering.dbscan with parameters of type Relation Modifier and Type Method Description protected voidGriDBSCAN.Instance. buildGrid(Relation<V> relation, int numcells, double[] offset)Build the data grid.protected voidDBSCAN.Instance. run(Relation<O> relation, RangeSearcher<DBIDRef> rangeSearcher)Run the DBSCAN algorithmClustering<Model>DBSCAN. run(Relation<O> relation)Performs the DBSCAN algorithm on the given database.Clustering<Model>GriDBSCAN.Instance. run(Relation<V> relation)Performs the DBSCAN algorithm on the given database.Clustering<Model>GriDBSCAN. run(Relation<V> relation)Performs the DBSCAN algorithm on the given database.Clustering<Model>LSDBC. run(Relation<O> relation)Run the LSDBC algorithmprivate intGriDBSCAN.Instance. runDBSCANOnCell(DBIDs cellids, Relation<V> relation, ModifiableDoubleDBIDList neighbors, ArrayModifiableDBIDs activeSet, int clusterid) -
Uses of Relation in elki.clustering.dbscan.predicates
Fields in elki.clustering.dbscan.predicates declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>ERiCNeighborPredicate.Instance. relationVector data relation.Methods in elki.clustering.dbscan.predicates with parameters of type Relation Modifier and Type Method Description protected abstract MAbstractRangeQueryNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends O> relation)Method to compute the actual data model.protected COPACNeighborPredicate.COPACModelCOPACNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList knnneighbors, Relation<? extends NumberVector> relation)COPAC model computationprotected PreDeConNeighborPredicate.PreDeConModelFourCNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends NumberVector> relation)protected PreDeConNeighborPredicate.PreDeConModelPreDeConNeighborPredicate. computeLocalModel(DBIDRef id, DoubleDBIDList neighbors, Relation<? extends NumberVector> relation)COPACNeighborPredicate.InstanceCOPACNeighborPredicate. instantiate(Relation<? extends NumberVector> relation)Full instantiation method.ERiCNeighborPredicate.InstanceERiCNeighborPredicate. instantiate(Relation<? extends NumberVector> relation)Full instantiation interface.DataStore<M>AbstractRangeQueryNeighborPredicate. preprocess(java.lang.Class<? super M> modelcls, Relation<? extends O> relation, RangeSearcher<DBIDRef> query)Perform the preprocessing step.Constructors in elki.clustering.dbscan.predicates with parameters of type Relation Constructor Description Instance(DBIDs ids, DataStore<PCAFilteredResult> storage, Relation<? extends NumberVector> relation)Constructor. -
Uses of Relation in elki.clustering.em
Methods in elki.clustering.em with parameters of type Relation Modifier and Type Method Description private voidKDTreeEM.KDTree. aggregateStats(Relation<? extends NumberVector> relation, DBIDArrayIter iter, int dim)Aggregate the statistics for a leaf node.private double[]KDTreeEM. analyseDimWidth(Relation<? extends NumberVector> relation)Helper method to retrieve the widths of all data in all dimensions.doubleBetulaGMM. assignProbabilitiesToInstances(Relation<? extends NumberVector> relation, java.util.List<? extends BetulaClusterModel> models, WritableDataStore<double[]> probClusterIGivenX)Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.static <O> doubleEM. assignProbabilitiesToInstances(Relation<? extends O> relation, java.util.List<? extends EMClusterModel<? super O,?>> models, WritableDataStore<double[]> probClusterIGivenX, WritableDoubleDataStore loglikelihoods)Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.private voidKDTreeEM.KDTree. computeBoundingBox(Relation<? extends NumberVector> relation, DBIDArrayIter iter)Compute the bounding box.static <O> voidEM. recomputeCovarianceMatrices(Relation<? extends O> relation, WritableDataStore<double[]> probClusterIGivenX, java.util.List<? extends EMClusterModel<? super O,?>> models, double prior)Recompute the covariance matrixes.Clustering<EMModel>BetulaGMM. run(Relation<NumberVector> relation)Run the clustering algorithm.Clustering<M>EM. run(Relation<O> relation)Performs the EM clustering algorithm on the given database.Clustering<EMModel>KDTreeEM. run(Relation<? extends NumberVector> relation)Calculates the EM Clustering with the given values by calling makeStats and calculation the new models from the given resultsConstructors in elki.clustering.em with parameters of type Relation Constructor Description KDTree(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs sorted, int left, int right, double[] dimWidth, double mbw)Constructor for a KDTree with statistics needed for KDTreeEM calculation. -
Uses of Relation in elki.clustering.em.models
Methods in elki.clustering.em.models with parameters of type Relation Modifier and Type Method Description java.util.List<DiagonalGaussianModel>DiagonalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<? extends EMClusterModel<O,M>>EMClusterModelFactory. buildInitialModels(Relation<? extends O> relation, int k)Build the initial modelsjava.util.List<MultivariateGaussianModel>MultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<SphericalGaussianModel>SphericalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<TextbookMultivariateGaussianModel>TextbookMultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<TextbookSphericalGaussianModel>TextbookSphericalGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k)java.util.List<TwoPassMultivariateGaussianModel>TwoPassMultivariateGaussianModelFactory. buildInitialModels(Relation<? extends NumberVector> relation, int k) -
Uses of Relation in elki.clustering.hierarchical
Methods in elki.clustering.hierarchical with parameters of type Relation Modifier and Type Method Description private voidLinearMemoryNNChain.Instance. nnChainCore(DBIDArrayIter aIt, DBIDArrayIter aIt2, ClusterMergeHistoryBuilder builder, Relation<O> rel)Core function of NNChain.ClusterMergeHistoryAGNES. run(Relation<O> relation)Run the algorithmClusterMergeHistoryAnderberg. run(Relation<O> relation)ClusterPrototypeMergeHistoryHACAM. run(Relation<O> relation)Run the algorithmClusterDensityMergeHistoryHDBSCANLinearMemory. run(Relation<O> relation)Run the algorithmClusterMergeHistoryLinearMemoryNNChain.Instance. run(ArrayDBIDs ids, Relation<O> relation, ClusterMergeHistoryBuilder builder)ClusterMergeHistoryLinearMemoryNNChain. run(Relation<O> relation)Run the NNchain algorithm.ClusterPrototypeMergeHistoryMedoidLinkage. run(Relation<O> relation)Run the algorithmClusterPrototypeMergeHistoryMiniMax. run(Relation<O> relation)Run the algorithm on a database.ClusterPrototypeMergeHistoryMiniMaxAnderberg. run(Relation<O> relation)Run the algorithmClusterPrototypeMergeHistoryMiniMaxNNChain. run(Relation<O> relation)Run the algorithmClusterMergeHistoryNNChain. run(Relation<O> relation)ClusterMergeHistorySLINK. run(Relation<O> relation)Performs the SLINK algorithm on the given database.ClusterMergeHistorySLINKHDBSCANLinearMemory. run(Relation<O> relation)Run the algorithmprivate voidSLINK. step2primitive(DBIDRef id, DBIDArrayIter it, int n, Relation<? extends O> relation, PrimitiveDistance<? super O> distance, WritableDoubleDataStore m)Second step: Determine the pairwise distances from all objects in the pointer representation to the new object with the specified id. -
Uses of Relation in elki.clustering.hierarchical.birch
Methods in elki.clustering.hierarchical.birch with parameters of type Relation Modifier and Type Method Description CFTreeCFTree.Factory. newTree(DBIDs ids, Relation<? extends NumberVector> relation)Make a new tree.Clustering<MeanModel>BIRCHLeafClustering. run(Relation<NumberVector> relation)Run the clustering algorithm.Clustering<KMeansModel>BIRCHLloydKMeans. run(Relation<NumberVector> relation)Run the clustering algorithm. -
Uses of Relation in elki.clustering.kcenter
Methods in elki.clustering.kcenter with parameters of type Relation Modifier and Type Method Description Clustering<SimplePrototypeModel<O>>GreedyKCenter. run(Relation<O> relation)Perform greedy k-center clustering on the relation. -
Uses of Relation in elki.clustering.kmeans
Fields in elki.clustering.kmeans declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>AbstractKMeans.Instance. relationData relation.Methods in elki.clustering.kmeans with parameters of type Relation Modifier and Type Method Description doubleFuzzyCMeans. assignProbabilitiesToInstances(Relation<V> relation, double[][] centers, WritableDataStore<double[]> probClusterIGivenX)Calculates the weights of all points and clusters.Clustering<KMeansModel>AbstractKMeans.Instance. buildResult(boolean varstat, Relation<? extends NumberVector> relation)Build the result, recomputing the cluster variance ifvarstatis set to true.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeBoundedMidpoint(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using bounded midpoint splitting.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeMedian(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using median splitting.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeMidpoint(Relation<? extends NumberVector> relation, int left, int right)Build the k-d-tree using midpoint splitting.protected KDTreePruningKMeans.KDNodeKDTreePruningKMeans.Instance. buildTreeSSQ(Relation<? extends NumberVector> relation, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using a variance-based splitting strategy.private static double[][]AbstractKMeans. denseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.protected double[][]AbstractKMeans. initialMeans(Relation<V> relation)Choose the initial means.protected static double[][]AbstractKMeans. means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.protected double[][]KMediansLloyd.Instance. medians(java.util.List<? extends DBIDs> clusters, double[][] medians, Relation<? extends NumberVector> relation)Returns the median vectors of the given clusters in the given database.protected voidAbstractKMeans.Instance. recomputeVariance(Relation<? extends NumberVector> relation)Recompute the cluster variances.Clustering<KMeansModel>AnnulusKMeans. run(Relation<V> relation)Clustering<M>BestOfMultipleKMeans. run(Relation<V> relation)Clustering<KMeansModel>BetulaLloydKMeans. run(Relation<NumberVector> relation)Run the clustering algorithm.Clustering<M>BisectingKMeans. run(Relation<V> relation)Clustering<KMeansModel>CompareMeans. run(Relation<V> relation)Clustering<KMeansModel>ElkanKMeans. run(Relation<V> relation)Clustering<KMeansModel>ExponionKMeans. run(Relation<V> relation)Clustering<MeanModel>FuzzyCMeans. run(Relation<V> relation)Runs Fuzzy C Means clustering on the given RelationClustering<KMeansModel>HamerlyKMeans. run(Relation<V> relation)Clustering<KMeansModel>HartiganWongKMeans. run(Relation<V> rel)Clustering<KMeansModel>KDTreeFilteringKMeans. run(Relation<V> relation)Clustering<KMeansModel>KDTreePruningKMeans. run(Relation<V> relation)Clustering<M>KMeans. run(Relation<V> rel)Run the clustering algorithm.Clustering<KMeansModel>KMeansMinusMinus. run(Relation<V> relation)Clustering<MeanModel>KMediansLloyd. run(Relation<V> relation)Clustering<KMeansModel>LloydKMeans. run(Relation<V> relation)Clustering<KMeansModel>MacQueenKMeans. run(Relation<V> relation)Clustering<KMeansModel>ShallotKMeans. run(Relation<V> relation)Clustering<KMeansModel>SimplifiedElkanKMeans. run(Relation<V> relation)Clustering<KMeansModel>SingleAssignmentKMeans. run(Relation<V> relation)Clustering<KMeansModel>SortMeans. run(Relation<V> relation)Clustering<M>XMeans. run(Relation<V> relation)Run the algorithm on a database and relation.Clustering<KMeansModel>YinYangKMeans. run(Relation<V> rel)private static double[][]AbstractKMeans. sparseMeans(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends SparseNumberVector> relation)Returns the mean vectors of the given clusters in the given database.protected double[][]GMeans. splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation)protected double[][]XMeans. splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation)Split an existing centroid into two initial centers.protected java.util.List<Cluster<M>>GMeans. splitCluster(Cluster<M> parentCluster, Relation<V> relation)protected java.util.List<Cluster<M>>XMeans. splitCluster(Cluster<M> parentCluster, Relation<V> relation)Conditionally splits the clusters based on the information criterion.private doubleFuzzyCMeans. updateMeans(Relation<V> relation, WritableDataStore<double[]> probClusterIGivenX, double[][] means, int d)Updates the means according to the weighted means of all data points.Constructors in elki.clustering.kmeans with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> df, double[][] means, int t)Constructor.KDNode(Relation<? extends NumberVector> relation, DBIDArrayIter iter, int start, int end)Constructor. -
Uses of Relation in elki.clustering.kmeans.initialization
Fields in elki.clustering.kmeans.initialization declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>KMC2.Instance. relationData relation.protected Relation<? extends NumberVector>KMeansPlusPlus.NumberVectorInstance. relationData relation.protected Relation<? extends NumberVector>SphericalKMeansPlusPlus.Instance. relationData relation.Methods in elki.clustering.kmeans.initialization with parameters of type Relation Modifier and Type Method Description double[][]AFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FarthestPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FarthestSumPoints. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]FirstK. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]KMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]KMeansInitialization. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)Choose initial meansdouble[][]KMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]Ostrovsky. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]Predefined. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomlyChosen. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomNormalGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]RandomUniformGenerated. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SampleKMeans. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SphericalAFKMC2. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]SphericalKMeansPlusPlus. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]Ostrovsky.NumberVectorInstance. run(Relation<? extends NumberVector> relation, int k)Constructors in elki.clustering.kmeans.initialization with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)Constructor.Instance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, int m, RandomFactory rnd)Constructor.Instance(Relation<? extends NumberVector> relation, int m, double alpha, RandomFactory rnd)Constructor.Instance(Relation<? extends NumberVector> relation, double alpha, RandomFactory rnd)Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)Constructor.NumberVectorInstance(Relation<? extends NumberVector> relation, NumberVectorDistance<?> distance, RandomFactory rnd)Constructor. -
Uses of Relation in elki.clustering.kmeans.parallel
Fields in elki.clustering.kmeans.parallel declared as Relation Modifier and Type Field Description private Relation<V>KMeansProcessor.Instance. relationData relation.(package private) Relation<V>KMeansProcessor. relationData relation.Methods in elki.clustering.kmeans.parallel with parameters of type Relation Modifier and Type Method Description Clustering<KMeansModel>ParallelLloydKMeans. run(Relation<V> relation)Constructors in elki.clustering.kmeans.parallel with parameters of type Relation Constructor Description Instance(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[][] means)Constructor.KMeansProcessor(Relation<V> relation, NumberVectorDistance<? super V> distance, WritableIntegerDataStore assignment, double[] varsum)Constructor. -
Uses of Relation in elki.clustering.kmeans.quality
Methods in elki.clustering.kmeans.quality with parameters of type Relation Modifier and Type Method Description static doubleAbstractKMeansQualityMeasure. logLikelihood(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static doubleBayesianInformationCriterionXMeans. logLikelihoodXMeans(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static doubleBayesianInformationCriterionZhao. logLikelihoodZhao(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistance<?> distance)Computes log likelihood of an entire clustering.static intAbstractKMeansQualityMeasure. numberOfFreeParameters(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering)Compute the number of free parameters.<V extends NumberVector>
doubleAkaikeInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleAkaikeInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterion. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterionXMeans. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleBayesianInformationCriterionZhao. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends O>
doubleKMeansQualityMeasure. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)Calculates and returns the quality measure.<V extends NumberVector>
doubleWithinClusterMeanDistance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)<V extends NumberVector>
doubleWithinClusterVariance. quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)static doubleAbstractKMeansQualityMeasure. varianceContributionOfCluster(Cluster<? extends MeanModel> cluster, NumberVectorDistance<?> distance, Relation<? extends NumberVector> relation)Variance contribution of a single cluster. -
Uses of Relation in elki.clustering.kmeans.spherical
Methods in elki.clustering.kmeans.spherical with parameters of type Relation Modifier and Type Method Description protected static double[][]SphericalKMeans.Instance. means(java.util.List<? extends DBIDs> clusters, double[][] means, Relation<? extends NumberVector> relation)Returns the mean vectors of the given clusters in the given database.protected voidSphericalKMeans.Instance. recomputeVariance(Relation<? extends NumberVector> relation)Clustering<KMeansModel>EuclideanSphericalElkanKMeans. run(Relation<V> relation)Clustering<KMeansModel>EuclideanSphericalHamerlyKMeans. run(Relation<V> relation)Clustering<KMeansModel>EuclideanSphericalSimplifiedElkanKMeans. run(Relation<V> relation)Clustering<KMeansModel>SphericalElkanKMeans. run(Relation<V> relation)Clustering<KMeansModel>SphericalHamerlyKMeans. run(Relation<V> relation)Clustering<KMeansModel>SphericalKMeans. run(Relation<V> relation)Clustering<KMeansModel>SphericalSimplifiedElkanKMeans. run(Relation<V> relation)Clustering<KMeansModel>SphericalSimplifiedHamerlyKMeans. run(Relation<V> relation)Clustering<KMeansModel>SphericalSingleAssignmentKMeans. run(Relation<V> relation)Constructors in elki.clustering.kmeans.spherical with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor. -
Uses of Relation in elki.clustering.kmedoids
Methods in elki.clustering.kmedoids that return Relation Modifier and Type Method Description Relation<? extends V>CLARA.CachedDistanceQuery. getRelation()Methods in elki.clustering.kmedoids with parameters of type Relation Modifier and Type Method Description Clustering<MedoidModel>AlternatingKMedoids. run(Relation<O> relation)Clustering<MedoidModel>AlternatingKMedoids. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>CLARA. run(Relation<V> relation)Clustering<MedoidModel>CLARA. run(Relation<V> relation, int k, DistanceQuery<? super V> distQ)Clustering<MedoidModel>CLARANS. run(Relation<O> relation)Run CLARANS clustering.Clustering<MedoidModel>CLARANS. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>EagerPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>FastCLARA. run(Relation<V> relation)Clustering<MedoidModel>FastCLARA. run(Relation<V> relation, int k, DistanceQuery<? super V> distQ)Clustering<MedoidModel>FastCLARANS. run(Relation<V> relation)Clustering<MedoidModel>FasterCLARA. run(Relation<O> relation)Clustering<MedoidModel>FasterCLARA. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>FasterPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>FastPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>FastPAM1. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>KMedoidsClustering. run(Relation<O> relation)Run k-medoids clustering.Clustering<MedoidModel>KMedoidsClustering. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Run k-medoids clustering with a given distance query.
Not a very elegant API, but needed for some types of nested k-medoids.Clustering<MedoidModel>PAM. run(Relation<O> relation)Clustering<MedoidModel>PAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>ReynoldsPAM. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>SingleAssignmentKMedoids. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ) -
Uses of Relation in elki.clustering.kmedoids.initialization
Methods in elki.clustering.kmedoids.initialization with parameters of type Relation Modifier and Type Method Description double[][]BUILD. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]LAB. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance)double[][]ParkJun. chooseInitialMeans(Relation<? extends NumberVector> relation, int k, NumberVectorDistance<?> distance) -
Uses of Relation in elki.clustering.meta
Methods in elki.clustering.meta with parameters of type Relation Modifier and Type Method Description private voidExternalClustering. attachToRelation(Relation<?> r, it.unimi.dsi.fastutil.ints.IntArrayList assignment, java.util.ArrayList<java.lang.String> name)Build a clustering from the file result. -
Uses of Relation in elki.clustering.onedimensional
Methods in elki.clustering.onedimensional with parameters of type Relation Modifier and Type Method Description Clustering<ClusterModel>KNNKernelDensityMinimaClustering. run(Relation<? extends NumberVector> relation)Run the clustering algorithm on a data relation. -
Uses of Relation in elki.clustering.optics
Methods in elki.clustering.optics with parameters of type Relation Modifier and Type Method Description abstract ClusterOrderAbstractOPTICS. run(Relation<O> relation)Run OPTICS on the database.ClusterOrderDeLiClu. run(Relation<V> relation)Run the DeLiClu clustering algorithm.ClusterOrderFastOPTICS. run(Relation<V> relation)Run the algorithm.ClusterOrderOPTICSHeap. run(Relation<O> relation)ClusterOrderOPTICSList. run(Relation<O> relation)Constructors in elki.clustering.optics with parameters of type Relation Constructor Description Instance(Relation<O> relation)Constructor for a single data set.Instance(Relation<O> relation)Constructor for a single data set. -
Uses of Relation in elki.clustering.silhouette
Methods in elki.clustering.silhouette with parameters of type Relation Modifier and Type Method Description Clustering<MedoidModel>FasterMSC. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>FastMSC. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>PAMMEDSIL. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ)Clustering<MedoidModel>PAMSIL. run(Relation<O> relation, int k, DistanceQuery<? super O> distQ) -
Uses of Relation in elki.clustering.subspace
Fields in elki.clustering.subspace declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>DiSH.Instance. relationData relation.private Relation<? extends NumberVector>HiSC.Instance. relationData relation.Methods in elki.clustering.subspace with parameters of type Relation Modifier and Type Method Description private java.util.ArrayList<PROCLUS.PROCLUSCluster>PROCLUS. assignPoints(ArrayDBIDs m_current, long[][] dimensions, Relation<? extends NumberVector> database)Assigns the objects to the clusters.private voidP3C. assignUnassigned(Relation<? extends NumberVector> relation, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, ModifiableDBIDs unassigned)Assign unassigned objects to best candidate based on shortest Mahalanobis distance.private doublePROCLUS. avgDistance(double[] centroid, DBIDs objectIDs, Relation<? extends NumberVector> database, int dimension)Computes the average distance of the objects to the centroid along the specified dimension.private voidDiSH. buildHierarchy(Relation<? extends NumberVector> database, Clustering<SubspaceModel> clustering, java.util.List<Cluster<SubspaceModel>> clusters, int dimensionality)Builds the cluster hierarchy.private voidDiSH. checkClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)Removes the clusters with size < minpts from the cluster map and adds them to their parents.private Clustering<SubspaceModel>DiSH. computeClusters(Relation<? extends NumberVector> database, DiSH.DiSHClusterOrder clusterOrder)Computes the hierarchical clusters according to the cluster order.private voidP3C. computeFuzzyMembership(Relation<? extends NumberVector> relation, java.util.ArrayList<P3C.Signature> clusterCores, ModifiableDBIDs unassigned, WritableDataStore<double[]> probClusterIGivenX, java.util.List<MultivariateGaussianModel> models, int dim)Computes a fuzzy membership with the weights based on which cluster cores each data point is part of.protected booleanDOC. dimensionIsRelevant(int dimension, Relation<? extends NumberVector> relation, DBIDs points)Utility method to test if a given dimension is relevant as determined via a set of reference points (i.e. if the variance along the attribute is lower than the threshold).private doublePROCLUS. evaluateClusters(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters, long[][] dimensions, Relation<? extends NumberVector> database)Evaluates the quality of the clusters.private it.unimi.dsi.fastutil.objects.Object2ObjectOpenCustomHashMap<long[],java.util.List<ArrayModifiableDBIDs>>DiSH. extractClusters(Relation<? extends NumberVector> relation, DiSH.DiSHClusterOrder clusterOrder)Extracts the clusters from the cluster order.private java.util.List<PROCLUS.PROCLUSCluster>PROCLUS. finalAssignment(java.util.List<Pair<double[],long[]>> dimensions, Relation<? extends NumberVector> database)Refinement step to assign the objects to the final clusters.private java.util.List<CLIQUESubspace>CLIQUE. findDenseSubspaceCandidates(Relation<? extends NumberVector> database, java.util.List<CLIQUESubspace> denseSubspaces)Determines thek-dimensional dense subspace candidates from the specified(k-1)-dimensional dense subspaces.private java.util.List<CLIQUESubspace>CLIQUE. findDenseSubspaces(Relation<? extends NumberVector> database, java.util.List<CLIQUESubspace> denseSubspaces)Determines thek-dimensional dense subspaces and performs a pruning if this option is chosen.private long[][]PROCLUS. findDimensions(ArrayDBIDs medoids, Relation<? extends NumberVector> relation, DistanceQuery<? extends NumberVector> distance, RangeSearcher<DBIDRef> rangeQuery)Determines the set of correlated dimensions for each medoid in the specified medoid set.private java.util.List<Pair<double[],long[]>>PROCLUS. findDimensions(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters, Relation<? extends NumberVector> database)Refinement step that determines the set of correlated dimensions for each cluster centroid.protected DBIDsDOC. findNeighbors(DBIDRef q, long[] nD, ArrayModifiableDBIDs S, Relation<? extends NumberVector> relation)Find the neighbors of point q in the given subspaceprivate java.util.List<CLIQUESubspace>CLIQUE. findOneDimensionalDenseSubspaceCandidates(Relation<? extends NumberVector> database)Determines the one-dimensional dense subspace candidates by making a pass over the database.private java.util.List<CLIQUESubspace>CLIQUE. findOneDimensionalDenseSubspaces(Relation<? extends NumberVector> database)Determines the one dimensional dense subspaces and performs a pruning if this option is chosen.private voidP3C. findOutliers(Relation<? extends NumberVector> relation, java.util.List<MultivariateGaussianModel> models, java.util.ArrayList<P3C.ClusterCandidate> clusterCandidates, ModifiableDBIDs noise)Performs outlier detection by testing the Mahalanobis distance of each point in a cluster against the critical value of the ChiSquared distribution with as many degrees of freedom as the cluster has relevant attributes.private Pair<long[],ArrayModifiableDBIDs>DiSH. findParent(Relation<? extends NumberVector> relation, Pair<long[],ArrayModifiableDBIDs> child, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)Returns the parent of the specified clusterprivate java.util.Collection<CLIQUEUnit>CLIQUE. initOneDimensionalUnits(Relation<? extends NumberVector> database)Initializes and returns the one dimensional units.private booleanDiSH. isParent(Relation<? extends NumberVector> relation, Cluster<SubspaceModel> parent, It<Cluster<SubspaceModel>> iter, int db_dim)Returns true, if the specified parent cluster is a parent of one child of the children clusters.protected Cluster<SubspaceModel>DOC. makeCluster(Relation<? extends NumberVector> relation, DBIDs C, long[] D)Utility method to create a subspace cluster from a list of DBIDs and the relevant attributes.private SetDBIDs[][]P3C. partitionData(Relation<? extends NumberVector> relation, int bins)Partition the data set intobinsbins in each dimension independently.Clustering<SubspaceModel>CLIQUE. run(Relation<? extends NumberVector> relation)Performs the CLIQUE algorithm on the given database.Clustering<SubspaceModel>DiSH. run(Relation<? extends NumberVector> relation)Performs the DiSH algorithm on the given database.Clustering<SubspaceModel>DOC. run(Relation<? extends NumberVector> relation)Performs the DOC or FastDOC (as configured) algorithm.ClusterOrderHiSC. run(Relation<? extends NumberVector> relation)Run the HiSC algorithmClustering<SubspaceModel>P3C. run(Relation<? extends NumberVector> relation)Performs the P3C algorithm on the given Database.<V extends NumberVector>
Clustering<SubspaceModel>PROCLUS. run(Relation<V> relation)Performs the PROCLUS algorithm on the given database.Clustering<SubspaceModel>SUBCLU. run(Relation<V> relation)Performs the SUBCLU algorithm on the given database.private java.util.List<Cluster<Model>>SUBCLU. runDBSCAN(Relation<V> relation, DBIDs ids, Subspace subspace)Runs the DBSCAN algorithm on the specified partition of the database in the given subspace.protected Cluster<SubspaceModel>DOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)Performs a single run of DOC, finding a single cluster.protected Cluster<SubspaceModel>FastDOC. runDOC(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)Performs a single run of FastDOC, finding a single cluster.private java.util.List<Cluster<SubspaceModel>>DiSH. sortClusters(Relation<? extends NumberVector> relation, it.unimi.dsi.fastutil.objects.Object2ObjectMap<long[],java.util.List<ArrayModifiableDBIDs>> clustersMap)Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order.Constructors in elki.clustering.subspace with parameters of type Relation Constructor Description Instance(Relation<? extends NumberVector> relation)Constructor.Instance(Relation<? extends NumberVector> relation)Constructor. -
Uses of Relation in elki.clustering.svm
Methods in elki.clustering.svm with parameters of type Relation Modifier and Type Method Description private booleanSupportVectorClustering. checkConnectivity(Relation<NumberVector> relation, double[] start, DBIDRef destRef, RegressionModel model, double fixed, ArrayDBIDs ids, SimilarityQuery<NumberVector> sim, double r_squared)Checks if the connecting line between start and dest lies inside the kernel space sphere.Clustering<Model>SupportVectorClustering. run(Relation<NumberVector> relation)perform clustering -
Uses of Relation in elki.clustering.trivial
Methods in elki.clustering.trivial with parameters of type Relation Modifier and Type Method Description private java.util.HashMap<java.lang.String,DBIDs>ByLabelClustering. multipleAssignment(Relation<?> data)Assigns the objects of the database to multiple clusters according to their labels.Clustering<Model>ByLabelClustering. run(Relation<?> relation)Run the actual clustering algorithm.Clustering<Model>ByLabelHierarchicalClustering. run(Relation<?> relation)Run the actual clustering algorithm.Clustering<Model>ByModelClustering. run(Relation<Model> relation)Run the actual clustering algorithm.Clustering<Model>TrivialAllInOne. run(Relation<?> relation)Perform trivial clustering.Clustering<Model>TrivialAllNoise. run(Relation<?> relation)Run the trivial clustering algorithm.private java.util.HashMap<java.lang.String,DBIDs>ByLabelClustering. singleAssignment(Relation<?> data)Assigns the objects of the database to single clusters according to their labels. -
Uses of Relation in elki.clustering.uncertain
Fields in elki.clustering.uncertain declared as Relation Modifier and Type Field Description private Relation<? extends UncertainObject>FDBSCANNeighborPredicate.Instance. relationThe relation holding the uncertain objects.Methods in elki.clustering.uncertain with parameters of type Relation Modifier and Type Method Description protected booleanUKMeans. assignToNearestCluster(Relation<DiscreteUncertainObject> relation, java.util.List<double[]> means, java.util.List<? extends ModifiableDBIDs> clusters, WritableIntegerDataStore assignment, double[] varsum)Returns a list of clusters.protected java.util.List<double[]>UKMeans. means(java.util.List<? extends ModifiableDBIDs> clusters, java.util.List<double[]> means, Relation<DiscreteUncertainObject> database)Returns the mean vectors of the given clusters in the given database.CCenterOfMassMetaClustering. run(Relation<? extends UncertainObject> relation)This run method will do the wrapping.Clustering<?>RepresentativeUncertainClustering. run(Database database, Relation<? extends UncertainObject> relation)This run method will do the wrapping.Clustering<KMeansModel>UKMeans. run(Relation<DiscreteUncertainObject> relation)Run the clustering.Constructors in elki.clustering.uncertain with parameters of type Relation Constructor Description Instance(double epsilon, int sampleSize, double threshold, Relation<? extends UncertainObject> relation, RandomFactory rand)Constructor. -
Uses of Relation in elki.data
Fields in elki.data declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>VectorUtil.SortDBIDsBySingleDimension. dataThe relation to sort.Constructors in elki.data with parameters of type Relation Constructor Description SortDBIDsBySingleDimension(Relation<? extends NumberVector> data)Constructor.SortDBIDsBySingleDimension(Relation<? extends NumberVector> data, int dim)Constructor. -
Uses of Relation in elki.data.model
Methods in elki.data.model with parameters of type Relation Modifier and Type Method Description static NumberVectorModelUtil. getPrototype(Model model, Relation<? extends NumberVector> relation)Get the representative vector for a cluster model.static <V extends NumberVector>
VModelUtil. getPrototype(Model model, Relation<? extends V> relation, NumberVector.Factory<V> factory)Get (and convert!)static NumberVectorModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends NumberVector> relation, DBIDs ids)Get the representative vector for a cluster model, or compute the centroid.static <V extends NumberVector>
VModelUtil. getPrototypeOrCentroid(Model model, Relation<? extends V> relation, DBIDs ids, NumberVector.Factory<V> factory)Get the representative vector for a cluster model, or compute the centroid.Constructors in elki.data.model with parameters of type Relation Constructor Description CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<? extends NumberVector> db, double[][] strongEigenvectors, double[][] weakEigenvectors, double[][] similarityMatrix, double[] centroid)Provides a new CorrelationAnalysisSolution holding the specified matrix.CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<? extends NumberVector> db, double[][] strongEigenvectors, double[][] weakEigenvectors, double[][] similarityMatrix, double[] centroid, java.text.NumberFormat nf)Provides a new CorrelationAnalysisSolution holding the specified matrix and number format. -
Uses of Relation in elki.database
Fields in elki.database with type parameters of type Relation Modifier and Type Field Description protected java.util.List<Relation<?>>AbstractDatabase. relationsThe relations we manage.Methods in elki.database that return Relation Modifier and Type Method Description private Relation<?>HashmapDatabase. addNewRelation(SimpleTypeInformation<?> meta)Add a new representation for the given meta.protected Relation<?>[]HashmapDatabase. alignColumns(ObjectBundle pack)Find a mapping from package columns to database columns, eventually adding new database columns when needed.<O> Relation<O>AbstractDatabase. getRelation(TypeInformation restriction, java.lang.Object... hints)<O> Relation<O>Database. getRelation(TypeInformation restriction, java.lang.Object... hints)Get an object representation.static Relation<java.lang.String>DatabaseUtil. guessLabelRepresentation(Database database)Guess a potentially label-like representation, preferring class labels.static Relation<java.lang.String>DatabaseUtil. guessObjectLabelRepresentation(Database database)Guess a potentially object label-like representation.Methods in elki.database that return types with arguments of type Relation Modifier and Type Method Description java.util.Collection<Relation<?>>AbstractDatabase. getRelations()java.util.Collection<Relation<?>>Database. getRelations()Get all relations of a database.Methods in elki.database with parameters of type Relation Modifier and Type Method Description voidProxyDatabase. addRelation(Relation<?> relation)Add a new representation.static java.util.SortedSet<ClassLabel>DatabaseUtil. getClassLabels(Relation<? extends ClassLabel> database)Retrieves all class labels within the database.Constructors in elki.database with parameters of type Relation Constructor Description ProxyDatabase(DBIDs ids, Relation<?>... relations)Constructor.Constructor parameters in elki.database with type arguments of type Relation Constructor Description ProxyDatabase(DBIDs ids, java.lang.Iterable<Relation<?>> relations)Constructor. -
Uses of Relation in elki.database.query
Fields in elki.database.query declared as Relation Modifier and Type Field Description private Relation<O>QueryBuilder. relationRelation to query.private Relation<? extends O>WrappedPrioritySearchDBIDByLookup. relationData relation.Methods in elki.database.query with parameters of type Relation Modifier and Type Method Description <O> DistanceQuery<O>EmpiricalQueryOptimizer. getDistanceQuery(Relation<? extends O> relation, Distance<? super O> distance, int flags)default <O> DistanceQuery<O>QueryOptimizer. getDistanceQuery(Relation<? extends O> relation, Distance<? super O> distanceFunction, int flags)Optimize a distance query for this relation.default <O> SimilarityQuery<O>QueryOptimizer. getSimilarityQuery(Relation<? extends O> relation, Similarity<? super O> similarityFunction, int flags)Optimize a similarity query for this relation.<O> KNNSearcher<DBIDRef>EmpiricalQueryOptimizer. kNNByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)default <O> KNNSearcher<DBIDRef>QueryOptimizer. kNNByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)Optimize a kNN query for this relation.<O> KNNSearcher<O>EmpiricalQueryOptimizer. kNNByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)default <O> KNNSearcher<O>QueryOptimizer. kNNByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)Optimize a kNN query for this relation.private <O> DistancePriorityIndex<O>EmpiricalQueryOptimizer. makeCoverTree(Relation<? extends O> relation, Distance<? super O> distance, int leafsize)private <O> DistancePriorityIndex<O>EmpiricalQueryOptimizer. makeKDTree(Relation<? extends O> relation, Distance<? super O> distance, int k)private <O> KNNIndex<O>EmpiricalQueryOptimizer. makeKnnPreprocessor(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)Make a knn preprocessor.private <O> DistancePriorityIndex<O>EmpiricalQueryOptimizer. makeMatrixIndex(Relation<? extends O> relation, Distance<? super O> distance)private <O> DistancePriorityIndex<O>EmpiricalQueryOptimizer. makeVPTree(Relation<? extends O> relation, Distance<? super O> distance, int leafsize)<O> PrioritySearcher<DBIDRef>EmpiricalQueryOptimizer. priorityByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)default <O> PrioritySearcher<DBIDRef>QueryOptimizer. priorityByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)Optimize a distance priority search for this relation.<O> PrioritySearcher<O>EmpiricalQueryOptimizer. priorityByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)default <O> PrioritySearcher<O>QueryOptimizer. priorityByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)Optimize a distance priority search for this relation.<O> RangeSearcher<DBIDRef>EmpiricalQueryOptimizer. rangeByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)default <O> RangeSearcher<DBIDRef>QueryOptimizer. rangeByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)Optimize a range query for this relation.<O> RangeSearcher<O>EmpiricalQueryOptimizer. rangeByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)default <O> RangeSearcher<O>QueryOptimizer. rangeByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, double maxrange, int flags)Optimize a range query for this relation.default <O> RKNNSearcher<DBIDRef>QueryOptimizer. rkNNByDBID(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)Optimize a reverse nearest neighbors query for this relation.default <O> RKNNSearcher<O>QueryOptimizer. rkNNByObject(Relation<? extends O> relation, DistanceQuery<O> distanceQuery, int maxk, int flags)Optimize a reverse nearest neighbors query for this relation.default <O> RangeSearcher<DBIDRef>QueryOptimizer. similarityRangeByDBID(Relation<? extends O> relation, SimilarityQuery<O> simQuery, double maxrange, int flags)Optimize a range query for this relation.default <O> RangeSearcher<O>QueryOptimizer. similarityRangeByObject(Relation<? extends O> relation, SimilarityQuery<O> simQuery, double maxrange, int flags)Optimize a range query for this relation.static <O> PrioritySearcher<DBIDRef>WrappedPrioritySearchDBIDByLookup. wrap(Relation<? extends O> relation, PrioritySearcher<O> inner)Wrap a query, if notnull.Constructors in elki.database.query with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, PrioritySearcher<O> inner)Constructor.QueryBuilder(Relation<O> relation, Distance<? super O> distance)Constructor.QueryBuilder(Relation<O> relation, Similarity<? super O> similarity)Constructor.WrappedPrioritySearchDBIDByLookup(Relation<? extends O> relation, PrioritySearcher<O> inner)Constructor. -
Uses of Relation in elki.database.query.distance
Fields in elki.database.query.distance declared as Relation Modifier and Type Field Description protected Relation<DBID>DBIDDistanceQuery. relationRelation to query.protected Relation<? extends O>PrimitiveDistanceQuery. relationThe data to use for this queryMethods in elki.database.query.distance that return Relation Modifier and Type Method Description Relation<? extends DBID>DBIDDistanceQuery. getRelation()Relation<? extends O>DistanceQuery. getRelation()Access the underlying data query.Relation<? extends O>PrimitiveDistanceQuery. getRelation()Constructors in elki.database.query.distance with parameters of type Relation Constructor Description DBIDDistanceQuery(Relation<DBID> relation, DBIDDistance distanceFunction)Constructor.DBIDRangeDistanceQuery(Relation<DBID> relation, DBIDRangeDistance distanceFunction)Constructor.PrimitiveDistanceQuery(Relation<? extends O> relation, PrimitiveDistance<? super O> distanceFunction)Constructor.PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation, PrimitiveDistance<? super O> distanceFunction, PrimitiveSimilarity<? super O> similarityFunction)Constructor.SpatialPrimitiveDistanceQuery(Relation<? extends V> relation, SpatialPrimitiveDistance<? super V> distanceFunction)SpatialPrimitiveDistanceSimilarityQuery(Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distanceFunction, PrimitiveSimilarity<? super O> similarityFunction)Constructor. -
Uses of Relation in elki.database.query.knn
Fields in elki.database.query.knn declared as Relation Modifier and Type Field Description protected Relation<? extends O>LinearScanPrimitiveKNNByObject. relationRelation to query.protected Relation<?>PreprocessorKNNQuery. relationThe data to use for this queryprivate Relation<? extends O>WrappedKNNDBIDByLookup. relationData relation.Methods in elki.database.query.knn with parameters of type Relation Modifier and Type Method Description static <O> KNNSearcher<DBIDRef>WrappedKNNDBIDByLookup. wrap(Relation<? extends O> relation, KNNSearcher<O> inner)Wrap a query, if notnull.Constructors in elki.database.query.knn with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, KNNSearcher<O> inner)Constructor.PreprocessorKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)Constructor.PreprocessorSqrtKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)Constructor.PreprocessorSquaredKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)Constructor.WrappedKNNDBIDByLookup(Relation<? extends O> relation, KNNSearcher<O> inner)Constructor. -
Uses of Relation in elki.database.query.range
Fields in elki.database.query.range declared as Relation Modifier and Type Field Description private Relation<? extends O>LinearScanEuclideanRangeByObject. relationRelation to scan.private Relation<? extends O>WrappedRangeDBIDByLookup. relationData relation.Methods in elki.database.query.range with parameters of type Relation Modifier and Type Method Description static <O> RangeSearcher<DBIDRef>WrappedRangeDBIDByLookup. wrap(Relation<? extends O> relation, RangeSearcher<O> inner)Wrap a query, if notnull.Constructors in elki.database.query.range with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, RangeSearcher<O> inner)Constructor.WrappedRangeDBIDByLookup(Relation<? extends O> relation, RangeSearcher<O> inner)Constructor. -
Uses of Relation in elki.database.query.rknn
Fields in elki.database.query.rknn declared as Relation Modifier and Type Field Description protected Relation<? extends O>PreprocessorRKNNQuery. relationThe data to use for this queryprivate Relation<? extends O>WrappedRKNNDBIDByLookup. relationData relation.Methods in elki.database.query.rknn with parameters of type Relation Modifier and Type Method Description static <O> RKNNSearcher<DBIDRef>WrappedRKNNDBIDByLookup. wrap(Relation<? extends O> relation, RKNNSearcher<O> inner)Wrap a query, if notnull.Constructors in elki.database.query.rknn with parameters of type Relation Constructor Description Linear(Relation<? extends O> relation, RKNNSearcher<O> inner)Constructor.PreprocessorRKNNQuery(Relation<O> database, MaterializeKNNAndRKNNPreprocessor.Factory<O> preprocessor)Constructor.PreprocessorRKNNQuery(Relation<O> relation, MaterializeKNNAndRKNNPreprocessor<O> preprocessor)Constructor.WrappedRKNNDBIDByLookup(Relation<? extends O> relation, RKNNSearcher<O> inner)Constructor. -
Uses of Relation in elki.database.query.similarity
Fields in elki.database.query.similarity declared as Relation Modifier and Type Field Description protected Relation<? extends O>PrimitiveSimilarityQuery. relationThe data to use for this queryMethods in elki.database.query.similarity that return Relation Modifier and Type Method Description Relation<? extends O>PrimitiveSimilarityQuery. getRelation()Relation<? extends O>SimilarityQuery. getRelation()Access the underlying data query.Constructors in elki.database.query.similarity with parameters of type Relation Constructor Description PrimitiveSimilarityQuery(Relation<? extends O> relation, PrimitiveSimilarity<? super O> similarityFunction)Constructor. -
Uses of Relation in elki.database.relation
Subinterfaces of Relation in elki.database.relation Modifier and Type Interface Description interfaceDoubleRelationInterface for double-valued relations.interfaceModifiableRelation<O>Relations that allow modification.Classes in elki.database.relation that implement Relation Modifier and Type Class Description classConvertToStringViewRepresentation adapter that uses toString() to produce a string representation.classDBIDViewPseudo-representation that is the object ID itself.classMaterializedDoubleRelationRepresents a single representation.classMaterializedRelation<O>Represents a single representation.classProjectedView<IN,OUT>Projected relation view (non-materialized)classProxyView<O>A virtual partitioning of the database.Fields in elki.database.relation declared as Relation Modifier and Type Field Description (package private) Relation<? extends O>RelationUtil.RelationObjectIterator. databaseThe database we use.(package private) Relation<? extends O>RelationUtil.CollectionFromRelation. dbThe database we query.(package private) Relation<?>ConvertToStringView. existingThe database we useprivate Relation<? extends IN>ProjectedView. innerThe wrapped representation where we get the IDs from.private Relation<O>ProxyView. innerThe wrapped representation where we get the IDs from.Methods in elki.database.relation that return Relation Modifier and Type Method Description static <V extends NumberVector,T extends NumberVector>
Relation<V>RelationUtil. relationUglyVectorCast(Relation<T> database)An ugly vector type cast unavoidable in some situations due to Generics.Methods in elki.database.relation with parameters of type Relation Modifier and Type Method Description static <V extends FeatureVector<?>>
VectorFieldTypeInformation<V>RelationUtil. assumeVectorField(Relation<V> relation)Get the vector field type information from a relation.static double[][]RelationUtil. computeMinMax(Relation<? extends NumberVector> relation)Determines the minimum and maximum values in each dimension of all objects stored in the given database.static intRelationUtil. dimensionality(Relation<? extends SpatialComparable> relation)Get the dimensionality of a database relation.static <V extends SpatialComparable>
java.lang.StringRelationUtil. getColumnLabel(Relation<? extends V> rel, int col)Get the column name or produce a generic label "Column XY".static <V extends NumberVector>
NumberVector.Factory<V>RelationUtil. getNumberVectorFactory(Relation<V> relation)Get the number vector factory of a database relation.static intRelationUtil. maxDimensionality(Relation<? extends SpatialComparable> relation)Get the dimensionality of a database relation.static double[][]RelationUtil. relationAsMatrix(Relation<? extends NumberVector> relation, ArrayDBIDs ids)Copy a relation into a double matrix.static <V extends NumberVector,T extends NumberVector>
Relation<V>RelationUtil. relationUglyVectorCast(Relation<T> database)An ugly vector type cast unavoidable in some situations due to Generics.Constructors in elki.database.relation with parameters of type Relation Constructor Description CollectionFromRelation(Relation<? extends O> db)Constructor.ConvertToStringView(Relation<?> existing)Constructor.ProjectedView(Relation<? extends IN> inner, Projection<IN,OUT> projection)Constructor.ProxyView(DBIDs idview, Relation<O> inner)Constructor.RelationObjectIterator(DBIDIter iter, Relation<? extends O> database)Full Constructor.RelationObjectIterator(Relation<? extends O> database)Simplified constructor. -
Uses of Relation in elki.distance
Fields in elki.distance declared as Relation Modifier and Type Field Description protected Relation<O>AbstractDatabaseDistance.Instance. relationRelation to query.protected Relation<O>AbstractIndexBasedDistance.Instance. relationRelation to query.Methods in elki.distance that return Relation Modifier and Type Method Description Relation<? extends O>AbstractDatabaseDistance.Instance. getRelation()Relation<? extends O>AbstractIndexBasedDistance.Instance. getRelation()Methods in elki.distance with parameters of type Relation Modifier and Type Method Description <O extends DBID>
DistanceQuery<O>AbstractDBIDRangeDistance. instantiate(Relation<O> database)<T extends O>
DistanceQuery<T>Distance. instantiate(Relation<T> relation)Instantiate with a database to get the actual distance query.default <T extends O>
DistanceQuery<T>PrimitiveDistance. instantiate(Relation<T> relation)<T extends DBID>
DistanceQuery<T>RandomStableDistance. instantiate(Relation<T> relation)<T extends O>
SharedNearestNeighborJaccardDistance.Instance<T>SharedNearestNeighborJaccardDistance. instantiate(Relation<T> database)default <T extends V>
SpatialPrimitiveDistanceQuery<T>SpatialPrimitiveDistance. instantiate(Relation<T> relation)Constructors in elki.distance with parameters of type Relation Constructor Description Instance(Relation<O> relation, Distance<? super O> parent)Constructor.Instance(Relation<O> relation, I index, F parent)Constructor.Instance(Relation<T> database, SharedNearestNeighborIndex<T> preprocessor, SharedNearestNeighborJaccardDistance<T> parent)Constructor. -
Uses of Relation in elki.distance.adapter
Methods in elki.distance.adapter with parameters of type Relation Modifier and Type Method Description abstract <T extends O>
DistanceQuery<T>AbstractSimilarityAdapter. instantiate(Relation<T> database)<T extends O>
DistanceQuery<T>ArccosSimilarityAdapter. instantiate(Relation<T> database)<T extends O>
DistanceQuery<T>LinearSimilarityAdapter. instantiate(Relation<T> database)<T extends O>
DistanceQuery<T>LnSimilarityAdapter. instantiate(Relation<T> database)Constructors in elki.distance.adapter with parameters of type Relation Constructor Description Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<? super O> similarityQuery)Constructor.Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<O> similarityQuery)Constructor.Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<? super O> similarityQuery)Constructor.Instance(Relation<O> database, Distance<? super O> parent, SimilarityQuery<O> similarityQuery)Constructor. -
Uses of Relation in elki.distance.external
Methods in elki.distance.external with parameters of type Relation Modifier and Type Method Description <O extends DBID>
DistanceQuery<O>FileBasedSparseDoubleDistance. instantiate(Relation<O> relation)<O extends DBID>
DistanceQuery<O>FileBasedSparseFloatDistance. instantiate(Relation<O> relation) -
Uses of Relation in elki.distance.probabilistic
Methods in elki.distance.probabilistic with parameters of type Relation Modifier and Type Method Description <T extends NumberVector>
SpatialPrimitiveDistanceSimilarityQuery<T>HellingerDistance. instantiate(Relation<T> database) -
Uses of Relation in elki.distance.set
Methods in elki.distance.set with parameters of type Relation Modifier and Type Method Description <T extends FeatureVector<?>>
DistanceSimilarityQuery<T>JaccardSimilarityDistance. instantiate(Relation<T> relation) -
Uses of Relation in elki.distance.subspace
Methods in elki.distance.subspace with parameters of type Relation Modifier and Type Method Description <T extends NumberVector>
SpatialPrimitiveDistanceQuery<T>SubspaceLPNormDistance. instantiate(Relation<T> database) -
Uses of Relation in elki.evaluation.clustering.internal
Methods in elki.evaluation.clustering.internal with parameters of type Relation Modifier and Type Method Description static intSimplifiedSilhouette. centroids(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)Compute centroids.protected double[]ConcordantPairsGammaTau. computeWithinDistances(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, int withinPairs)doubleCIndex. evaluateClustering(Relation<? extends O> rel, DistanceQuery<O> dq, Clustering<?> c)Evaluate a single clustering.doubleClusterRadius. evaluateClustering(Database db, Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleConcordantPairsGammaTau. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleDaviesBouldinIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleDBCV. evaluateClustering(Relation<O> relation, Clustering<?> cl)Evaluate a single clustering.doublePBMIndex. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleSilhouette. evaluateClustering(Relation<O> rel, DistanceQuery<O> dq, Clustering<?> c)Evaluate a single clustering.doubleSimplifiedSilhouette. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleSquaredErrors. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.doubleVarianceRatioCriterion. evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.static intVarianceRatioCriterion. globalCentroid(Centroid overallCentroid, Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)Update the global centroid.protected voidCIndex. processSingleton(Cluster<?> cluster, Relation<? extends O> rel, DistanceQuery<O> dq, DoubleHeap maxDists, DoubleHeap minDists, int w)double[]DaviesBouldinIndex. withinGroupDistances(Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids) -
Uses of Relation in elki.evaluation.similaritymatrix
Fields in elki.evaluation.similaritymatrix declared as Relation Modifier and Type Field Description (package private) Relation<?>ComputeSimilarityMatrixImage.SimilarityMatrix. relationThe databaseMethods in elki.evaluation.similaritymatrix that return Relation Modifier and Type Method Description Relation<?>ComputeSimilarityMatrixImage.SimilarityMatrix. getRelation()Get the relationMethods in elki.evaluation.similaritymatrix with parameters of type Relation Modifier and Type Method Description private ComputeSimilarityMatrixImage.SimilarityMatrixComputeSimilarityMatrixImage. computeSimilarityMatrixImage(Relation<O> relation, DBIDIter iter)Compute the actual similarity image.Constructors in elki.evaluation.similaritymatrix with parameters of type Relation Constructor Description SimilarityMatrix(java.awt.image.RenderedImage img, Relation<?> relation, ArrayDBIDs ids)Constructor -
Uses of Relation in elki.index
Fields in elki.index declared as Relation Modifier and Type Field Description protected Relation<O>AbstractRefiningIndex. relationThe representation we are bound to.Methods in elki.index with parameters of type Relation Modifier and Type Method Description IndexIndexFactory. instantiate(Relation<V> relation)Sets the database in the distance function of this index (if existing).Constructors in elki.index with parameters of type Relation Constructor Description AbstractRefiningIndex(Relation<O> relation)Constructor. -
Uses of Relation in elki.index.distancematrix
Fields in elki.index.distancematrix declared as Relation Modifier and Type Field Description protected Relation<O>PrecomputedSimilarityMatrix. relationThe representation we are bound to.Fields in elki.index.distancematrix with type parameters of type Relation Modifier and Type Field Description protected java.lang.ref.WeakReference<Relation<O>>PrecomputedDistanceMatrix. refrelationData relation.Methods in elki.index.distancematrix that return Relation Modifier and Type Method Description Relation<? extends O>PrecomputedDistanceMatrix.PrecomputedDistanceQuery. getRelation()Relation<? extends O>PrecomputedSimilarityMatrix.PrecomputedSimilarityQuery. getRelation()Methods in elki.index.distancematrix with parameters of type Relation Modifier and Type Method Description PrecomputedDistanceMatrix<O>PrecomputedDistanceMatrix.Factory. instantiate(Relation<O> relation)PrecomputedSimilarityMatrix<O>PrecomputedSimilarityMatrix.Factory. instantiate(Relation<O> relation)Constructors in elki.index.distancematrix with parameters of type Relation Constructor Description PrecomputedDistanceMatrix(Relation<O> relation, DBIDRange range, Distance<? super O> distance)Constructor.PrecomputedSimilarityMatrix(Relation<O> relation, Similarity<? super O> similarityFunction)Constructor. -
Uses of Relation in elki.index.idistance
Methods in elki.index.idistance with parameters of type Relation Modifier and Type Method Description InMemoryIDistanceIndex<V>InMemoryIDistanceIndex.Factory. instantiate(Relation<V> relation)Constructors in elki.index.idistance with parameters of type Relation Constructor Description InMemoryIDistanceIndex(Relation<O> relation, DistanceQuery<O> distance, KMedoidsInitialization<O> initialization, int numref)Constructor. -
Uses of Relation in elki.index.invertedlist
Fields in elki.index.invertedlist declared as Relation Modifier and Type Field Description protected Relation<V>InMemoryInvertedIndex. relationThe representation we are bound to.Methods in elki.index.invertedlist with parameters of type Relation Modifier and Type Method Description InMemoryInvertedIndex<V>InMemoryInvertedIndex.Factory. instantiate(Relation<V> relation)Constructors in elki.index.invertedlist with parameters of type Relation Constructor Description InMemoryInvertedIndex(Relation<V> relation)Constructor. -
Uses of Relation in elki.index.laesa
Fields in elki.index.laesa declared as Relation Modifier and Type Field Description (package private) Relation<O>LAESA. relationRelation indexed.Methods in elki.index.laesa with parameters of type Relation Modifier and Type Method Description LAESA<O>LAESA.Factory. instantiate(Relation<O> relation)Constructors in elki.index.laesa with parameters of type Relation Constructor Description LAESA(Relation<O> relation, Distance<? super O> distance, int m, int k, RandomFactory rng)Constructor. -
Uses of Relation in elki.index.lsh
Methods in elki.index.lsh with parameters of type Relation Modifier and Type Method Description InMemoryLSHIndex.InstanceInMemoryLSHIndex. instantiate(Relation<V> relation)Constructors in elki.index.lsh with parameters of type Relation Constructor Description Instance(Relation<V> relation, java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super V>> hashfunctions, int numberOfBuckets)Constructor. -
Uses of Relation in elki.index.lsh.hashfamilies
Methods in elki.index.lsh.hashfamilies with parameters of type Relation Modifier and Type Method Description java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>AbstractProjectedHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l)java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>>CosineHashFunctionFamily. generateHashFunctions(Relation<? extends NumberVector> relation, int l)java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super V>>LocalitySensitiveHashFunctionFamily. generateHashFunctions(Relation<? extends V> relation, int l)Generate hash functions for the given relation. -
Uses of Relation in elki.index.preprocessed.fastoptics
Fields in elki.index.preprocessed.fastoptics declared as Relation Modifier and Type Field Description (package private) Relation<? extends NumberVector>RandomProjectedNeighborsAndDensities. pointsentire point setMethods in elki.index.preprocessed.fastoptics with parameters of type Relation Modifier and Type Method Description voidRandomProjectedNeighborsAndDensities. computeSetsBounds(Relation<? extends NumberVector> points, int minSplitSize, DBIDs ptList)Create random projections, project points and put points into sets of size about minSplitSize/2 -
Uses of Relation in elki.index.preprocessed.knn
Fields in elki.index.preprocessed.knn declared as Relation Modifier and Type Field Description protected Relation<O>AbstractMaterializeKNNPreprocessor. relationThe relation we are bound to.protected Relation<O>NaiveProjectedKNNPreprocessor. relationThe representation we are bound to.protected Relation<O>SpacefillingKNNPreprocessor. relationThe representation we are bound to.Methods in elki.index.preprocessed.knn with parameters of type Relation Modifier and Type Method Description private MetricalIndexTree<O,N,E>MetricalIndexApproximationMaterializeKNNPreprocessor. getMetricalIndex(Relation<? extends O> relation)Do some (limited) type checking, then cast the database into a spatial database.protected AbstractRStarTree<?,SpatialEntry,?>SpatialApproximationMaterializeKNNPreprocessor. getSpatialIndex(Relation<O> relation)abstract AbstractMaterializeKNNPreprocessor<O>AbstractMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)CachedDoubleDistanceKNNPreprocessor<O>CachedDoubleDistanceKNNPreprocessor.Factory. instantiate(Relation<O> relation)KNNJoinMaterializeKNNPreprocessor<O>KNNJoinMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)MaterializeKNNAndRKNNPreprocessor<O>MaterializeKNNAndRKNNPreprocessor.Factory. instantiate(Relation<O> relation)MaterializeKNNPreprocessor<O>MaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)MetricalIndexApproximationMaterializeKNNPreprocessor<O,N,E>MetricalIndexApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)NaiveProjectedKNNPreprocessor<V>NaiveProjectedKNNPreprocessor.Factory. instantiate(Relation<V> relation)NNDescent<O>NNDescent.Factory. instantiate(Relation<O> relation)PartitionApproximationMaterializeKNNPreprocessor<O>PartitionApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)RandomSampleKNNPreprocessor<O>RandomSampleKNNPreprocessor.Factory. instantiate(Relation<O> relation)SpacefillingKNNPreprocessor<V>SpacefillingKNNPreprocessor.Factory. instantiate(Relation<V> relation)SpacefillingMaterializeKNNPreprocessor<V>SpacefillingMaterializeKNNPreprocessor.Factory. instantiate(Relation<V> relation)SpatialApproximationMaterializeKNNPreprocessor<NumberVector>SpatialApproximationMaterializeKNNPreprocessor.Factory. instantiate(Relation<NumberVector> relation)Constructors in elki.index.preprocessed.knn with parameters of type Relation Constructor Description AbstractMaterializeKNNPreprocessor(Relation<O> relation, DistanceQuery<O> distanceQuery, int k)Constructor.AbstractMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)Constructor.CachedDoubleDistanceKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, java.nio.file.Path file)Constructor.KNNJoinMaterializeKNNPreprocessor(Relation<V> relation, Distance<? super V> distance, int k)Constructor.MaterializeKNNAndRKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)Constructor.MaterializeKNNPreprocessor(Relation<O> relation, DistanceQuery<O> distanceQuery, int k, boolean noopt)Constructor with preprocessing step.MaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)Constructor with preprocessing step.MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)ConstructorNaiveProjectedKNNPreprocessor(Relation<O> relation, double window, int projections, RandomProjectionFamily proj, java.util.Random random)Constructor.NNDescent(Relation<O> relation, Distance<? super O> distance, int k, RandomFactory rnd, double delta, double rho, boolean noInitialNeighbors, int iterations)Constructor.PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, int partitions, RandomFactory rnd)ConstructorRandomSampleKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, double share, RandomFactory rnd)Constructor.SpacefillingKNNPreprocessor(Relation<O> relation, java.util.List<? extends SpatialSorter> curvegen, double window, int variants, int odim, RandomProjectionFamily proj, java.util.Random random)Constructor.SpacefillingMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k, java.util.List<? extends SpatialSorter> curvegen, double window, int variants, java.util.Random random)Constructor.SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation, Distance<? super O> distance, int k)Constructor -
Uses of Relation in elki.index.preprocessed.snn
Fields in elki.index.preprocessed.snn declared as Relation Modifier and Type Field Description protected Relation<O>SharedNearestNeighborPreprocessor. relationRelation to use.Methods in elki.index.preprocessed.snn with parameters of type Relation Modifier and Type Method Description SharedNearestNeighborIndex<O>SharedNearestNeighborIndex.Factory. instantiate(Relation<O> database)Instantiate the index for a given database.SharedNearestNeighborPreprocessor<O>SharedNearestNeighborPreprocessor.Factory. instantiate(Relation<O> relation)Constructors in elki.index.preprocessed.snn with parameters of type Relation Constructor Description SharedNearestNeighborPreprocessor(Relation<O> relation, int numberOfNeighbors, Distance<O> distance)Constructor. -
Uses of Relation in elki.index.projected
Fields in elki.index.projected declared as Relation Modifier and Type Field Description (package private) Relation<? extends O>ProjectedIndex. relationThe relation we predend to index.(package private) Relation<I>ProjectedIndex. viewThe view that we really index.Methods in elki.index.projected with parameters of type Relation Modifier and Type Method Description ProjectedIndex<O,O>LatLngAsECEFIndex.Factory. instantiate(Relation<O> relation)ProjectedIndex<O,O>LngLatAsECEFIndex.Factory. instantiate(Relation<O> relation)ProjectedIndex<O,I>ProjectedIndex.Factory. instantiate(Relation<O> relation)Constructors in elki.index.projected with parameters of type Relation Constructor Description LatLngAsECEFIndex(Relation<? extends O> relation, Projection<O,O> proj, Relation<O> view, Index inner, boolean norefine)Constructor.LngLatAsECEFIndex(Relation<? extends O> relation, Projection<O,O> proj, Relation<O> view, Index inner, boolean norefine)Constructor.ProjectedIndex(Relation<? extends O> relation, Projection<O,I> proj, Relation<I> view, Index inner, boolean norefine, double kmulti)Constructor. -
Uses of Relation in elki.index.tree.betula
Methods in elki.index.tree.betula with parameters of type Relation Modifier and Type Method Description CFTree<L>CFTree.Factory. newTree(DBIDs ids, Relation<? extends NumberVector> relation, boolean storeIds)Make a new tree. -
Uses of Relation in elki.index.tree.metrical.covertree
Fields in elki.index.tree.metrical.covertree declared as Relation Modifier and Type Field Description protected Relation<O>AbstractCoverTree. relationThe representation we are bound to.Methods in elki.index.tree.metrical.covertree with parameters of type Relation Modifier and Type Method Description CoverTree<O>CoverTree.Factory. instantiate(Relation<O> relation)SimplifiedCoverTree<O>SimplifiedCoverTree.Factory. instantiate(Relation<O> relation)Constructors in elki.index.tree.metrical.covertree with parameters of type Relation Constructor Description AbstractCoverTree(Relation<O> relation, Distance<? super O> distance, double expansion, int truncate)Constructor.CoverTree(Relation<O> relation, Distance<? super O> distance, double expansion, int truncate)Constructor.CoverTree(Relation<O> relation, Distance<? super O> distance, int truncate)Constructor.SimplifiedCoverTree(Relation<O> relation, Distance<? super O> distance, double expansion, int truncate)Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees
Constructors in elki.index.tree.metrical.mtreevariants.mktrees with parameters of type Relation Constructor Description AbstractMkTree(Relation<O> relation, PageFile<N> pagefile, S settings)Constructor.AbstractMkTreeUnified(Relation<O> relation, PageFile<N> pagefile, S settings)Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mkapp
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mkapp declared as Relation Modifier and Type Field Description private Relation<O>MkAppTreeIndex. relationThe relation indexedMethods in elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation Modifier and Type Method Description MkAppTreeIndex<O>MkAppTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation Constructor Description MkAppTree(Relation<O> relation, PageFile<MkAppTreeNode<O>> pageFile, MkAppTreeSettings<O> settings)Constructor.MkAppTreeIndex(Relation<O> relation, PageFile<MkAppTreeNode<O>> pageFile, MkAppTreeSettings<O> settings)Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mkcop
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mkcop declared as Relation Modifier and Type Field Description private Relation<O>MkCoPTreeIndex. relationRelation indexedMethods in elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation Modifier and Type Method Description MkCoPTreeIndex<O>MkCopTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation Constructor Description MkCoPTree(Relation<O> relation, PageFile<MkCoPTreeNode<O>> pagefile, MkTreeSettings<O,MkCoPTreeNode<O>,MkCoPEntry> settings)Constructor.MkCoPTreeIndex(Relation<O> relation, PageFile<MkCoPTreeNode<O>> pageFile, MkTreeSettings<O,MkCoPTreeNode<O>,MkCoPEntry> settings)Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mkmax
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mkmax declared as Relation Modifier and Type Field Description private Relation<O>MkMaxTreeIndex. relationRelation indexed.Methods in elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation Modifier and Type Method Description MkMaxTreeIndex<O>MkMaxTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation Constructor Description MkMaxTree(Relation<O> relation, PageFile<MkMaxTreeNode<O>> pagefile, MkTreeSettings<O,MkMaxTreeNode<O>,MkMaxEntry> settings)Constructor.MkMaxTreeIndex(Relation<O> relation, PageFile<MkMaxTreeNode<O>> pagefile, MkTreeSettings<O,MkMaxTreeNode<O>,MkMaxEntry> settings)Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mktrees.mktab
Fields in elki.index.tree.metrical.mtreevariants.mktrees.mktab declared as Relation Modifier and Type Field Description private Relation<O>MkTabTreeIndex. relationThe relation indexed.Methods in elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation Modifier and Type Method Description MkTabTreeIndex<O>MkTabTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation Constructor Description MkTabTree(Relation<O> relation, PageFile<MkTabTreeNode<O>> pagefile, MkTreeSettings<O,MkTabTreeNode<O>,MkTabEntry> settings)Constructor.MkTabTreeIndex(Relation<O> relation, PageFile<MkTabTreeNode<O>> pagefile, MkTreeSettings<O,MkTabTreeNode<O>,MkTabEntry> settings)Constructor. -
Uses of Relation in elki.index.tree.metrical.mtreevariants.mtree
Fields in elki.index.tree.metrical.mtreevariants.mtree declared as Relation Modifier and Type Field Description private Relation<O>MTreeIndex. relationThe relation indexed.Methods in elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation Modifier and Type Method Description MTreeIndex<O>MTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation Constructor Description MTreeIndex(Relation<O> relation, PageFile<MTreeNode<O>> pagefile, MTreeSettings<O,MTreeNode<O>,MTreeEntry> settings)Constructor. -
Uses of Relation in elki.index.tree.metrical.vptree
Fields in elki.index.tree.metrical.vptree declared as Relation Modifier and Type Field Description protected Relation<O>GNAT. relationThe representation we are bound to.protected Relation<O>VPTree. relationThe representation we are bound to.Methods in elki.index.tree.metrical.vptree with parameters of type Relation Modifier and Type Method Description GNAT<O>GNAT.Factory. instantiate(Relation<O> relation)VPTree<O>VPTree.Factory. instantiate(Relation<O> relation)Constructors in elki.index.tree.metrical.vptree with parameters of type Relation Constructor Description GNAT(Relation<O> relation, Distance<? super O> distance, RandomFactory random, int numberVPs)Constructor.VPTree(Relation<O> relation, Distance<? super O> distance, int leafsize)Constructor with default values, used by EmpiricalQueryOptimizerVPTree(Relation<O> relation, Distance<? super O> distance, RandomFactory random, int sampleSize, int truncate)Constructor. -
Uses of Relation in elki.index.tree.spatial.kd
Classes in elki.index.tree.spatial.kd that implement Relation Modifier and Type Class Description private classMemoryKDTree.CountingRelationProxy to count accesses.Fields in elki.index.tree.spatial.kd declared as Relation Modifier and Type Field Description protected Relation<O>MemoryKDTree. relationThe representation we are bound to.protected Relation<O>MinimalisticMemoryKDTree. relationThe representation we are bound to.protected Relation<O>SmallMemoryKDTree. relationThe representation we are bound to.Methods in elki.index.tree.spatial.kd with parameters of type Relation Modifier and Type Method Description java.lang.ObjectMemoryKDTree. buildTree(Relation<? extends NumberVector> relation, int left, int right, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d tree.MemoryKDTree<O>MemoryKDTree.Factory. instantiate(Relation<O> relation)MinimalisticMemoryKDTree<O>MinimalisticMemoryKDTree.Factory. instantiate(Relation<O> relation)SmallMemoryKDTree<O>SmallMemoryKDTree.Factory. instantiate(Relation<O> relation)Constructors in elki.index.tree.spatial.kd with parameters of type Relation Constructor Description CountSortAccesses(Counter objaccess, Relation<? extends NumberVector> data)Constructor.MemoryKDTree(Relation<O> relation, int leafsize)Constructor with default split (used by EmpiricalQueryOptimizer).MemoryKDTree(Relation<O> relation, SplitStrategy split, int leafsize)Constructor.MinimalisticMemoryKDTree(Relation<O> relation, int leafsize)Constructor.SmallMemoryKDTree(Relation<O> relation, int leafsize)Constructor. -
Uses of Relation in elki.index.tree.spatial.kd.split
Methods in elki.index.tree.spatial.kd.split with parameters of type Relation Modifier and Type Method Description SplitStrategy.InfoBoundedMidpointSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoLeastOneDimSSQSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoLeastSSQSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMeanVarianceSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMedianSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMedianVarianceSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoMidpointSplit. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)SplitStrategy.InfoSplitStrategy. findSplit(Relation<? extends NumberVector> relation, int dims, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int left, int right, VectorUtil.SortDBIDsBySingleDimension comp)Build the k-d-tree using midpoint splitting.(package private) static double[]SplitStrategy.Util. minmaxRange(int dims, Relation<? extends NumberVector> relation, DBIDArrayIter iter, int left, int right)Find the minimum and maximum in each dimension of a range of values.(package private) static intSplitStrategy.Util. pivot(Relation<? extends NumberVector> relation, ArrayModifiableDBIDs sorted, DBIDArrayMIter iter, int dim, int left, int right, double mid)Pivot an interval.(package private) static double[]SplitStrategy.Util. sumvar(Relation<? extends NumberVector> relation, int dims, DBIDArrayMIter iter, int left, int right)Compute the sum and sum-of-squares (for variance). -
Uses of Relation in elki.index.tree.spatial.rstarvariants.deliclu
Fields in elki.index.tree.spatial.rstarvariants.deliclu declared as Relation Modifier and Type Field Description private Relation<O>DeLiCluTreeIndex. relationThe relation we index.Methods in elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation Modifier and Type Method Description DeLiCluTreeIndex<O>DeLiCluTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation Constructor Description DeLiCluTreeIndex(Relation<O> relation, PageFile<DeLiCluNode> pagefile, RTreeSettings settings)Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.flat
Fields in elki.index.tree.spatial.rstarvariants.flat declared as Relation Modifier and Type Field Description private Relation<O>FlatRStarTreeIndex. relationThe relation we indexMethods in elki.index.tree.spatial.rstarvariants.flat with parameters of type Relation Modifier and Type Method Description FlatRStarTreeIndex<O>FlatRStarTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.spatial.rstarvariants.flat with parameters of type Relation Constructor Description FlatRStarTreeIndex(Relation<O> relation, PageFile<FlatRStarTreeNode> pagefile, RTreeSettings settings)Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.query
Fields in elki.index.tree.spatial.rstarvariants.query declared as Relation Modifier and Type Field Description protected Relation<? extends O>EuclideanRStarTreeDistancePrioritySearcher. relationRelation we query.protected Relation<? extends O>RStarTreeDistancePrioritySearcher. relationRelation we query.protected Relation<? extends O>RStarTreeKNNSearcher. relationRelation we query.protected Relation<? extends O>RStarTreeRangeSearcher. relationRelation we query.Constructors in elki.index.tree.spatial.rstarvariants.query with parameters of type Relation Constructor Description EuclideanRStarTreeDistancePrioritySearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation)Constructor.EuclideanRStarTreeKNNQuery(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation)Constructor.EuclideanRStarTreeRangeQuery(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation)Constructor.RStarTreeDistancePrioritySearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distance)Constructor.RStarTreeKNNSearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distance)Constructor.RStarTreeRangeSearcher(AbstractRStarTree<?,?,?> tree, Relation<? extends O> relation, SpatialPrimitiveDistance<? super O> distance)Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.rdknn
Fields in elki.index.tree.spatial.rstarvariants.rdknn declared as Relation Modifier and Type Field Description private Relation<O>RdKNNTree. relationThe relation we query.Methods in elki.index.tree.spatial.rstarvariants.rdknn with parameters of type Relation Modifier and Type Method Description RdKNNTree<O>RdKNNTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.spatial.rstarvariants.rdknn with parameters of type Relation Constructor Description RdKNNTree(Relation<O> relation, PageFile<RdKNNNode> pagefile, RdkNNSettings settings)Constructor. -
Uses of Relation in elki.index.tree.spatial.rstarvariants.rstar
Fields in elki.index.tree.spatial.rstarvariants.rstar declared as Relation Modifier and Type Field Description private Relation<O>RStarTreeIndex. relationRelationMethods in elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation Modifier and Type Method Description RStarTreeIndex<O>RStarTreeFactory. instantiate(Relation<O> relation)Constructors in elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation Constructor Description RStarTreeIndex(Relation<O> relation, PageFile<RStarTreeNode> pagefile, RTreeSettings settings)Constructor. -
Uses of Relation in elki.index.vafile
Methods in elki.index.vafile with parameters of type Relation Modifier and Type Method Description PartialVAFile<V>PartialVAFile.Factory. instantiate(Relation<V> relation)VAFile<V>VAFile.Factory. instantiate(Relation<V> relation)voidVAFile. setPartitions(Relation<V> relation)Initialize the data set grid by computing quantiles.Constructors in elki.index.vafile with parameters of type Relation Constructor Description DAFile(Relation<? extends NumberVector> relation, int dimension, int partitions)Constructor.PartialVAFile(int pageSize, Relation<V> relation, int partitions)Constructor.VAFile(int pageSize, Relation<V> relation, int partitions)Constructor. -
Uses of Relation in elki.itemsetmining
Methods in elki.itemsetmining with parameters of type Relation Modifier and Type Method Description private FPGrowth.FPTreeFPGrowth. buildFPTree(Relation<BitVector> relation, int[] iidx, int items)Build the actual FP-tree structure.protected java.util.List<OneItemset>APRIORI. buildFrequentOneItemsets(Relation<? extends SparseFeatureVector<?>> relation, int dim, int needed)Build the 1-itemsets.protected java.util.List<SparseItemset>APRIORI. buildFrequentTwoItemsets(java.util.List<OneItemset> oneitems, Relation<BitVector> relation, int dim, int needed, DBIDs ids, ArrayModifiableDBIDs survivors)Build the 2-itemsets.private DBIDs[]Eclat. buildIndex(Relation<BitVector> relation, int dim, int minsupp)private int[]FPGrowth. countItemSupport(Relation<BitVector> relation, int dim)Count the support of each 1-item.protected java.util.List<? extends Itemset>APRIORI. frequentItemsets(java.util.List<? extends Itemset> candidates, Relation<BitVector> relation, int needed, DBIDs ids, ArrayModifiableDBIDs survivors, int length)Returns the frequent BitSets out of the given BitSets with respect to the given database.protected java.util.List<SparseItemset>APRIORI. frequentItemsetsSparse(java.util.List<SparseItemset> candidates, Relation<BitVector> relation, int needed, DBIDs ids, ArrayModifiableDBIDs survivors, int length)Returns the frequent BitSets out of the given BitSets with respect to the given database.FrequentItemsetsResultAPRIORI. run(Relation<BitVector> relation)Performs the APRIORI algorithm on the given database.FrequentItemsetsResultEclat. run(Relation<BitVector> relation)Run the Eclat algorithmFrequentItemsetsResultFPGrowth. run(Relation<BitVector> relation)Run the FP-Growth algorithm -
Uses of Relation in elki.math
Methods in elki.math with parameters of type Relation Modifier and Type Method Description static MeanVariance[]MeanVariance. of(Relation<? extends NumberVector> relation)Compute the variances of a relation. -
Uses of Relation in elki.math.linearalgebra
Methods in elki.math.linearalgebra with parameters of type Relation Modifier and Type Method Description <F extends NumberVector>
FCovarianceMatrix. getMeanVector(Relation<? extends F> relation)Get the mean as vector.static CentroidCentroid. make(Relation<? extends NumberVector> relation, DBIDs ids)Static constructor from an existing relation.static CovarianceMatrixCovarianceMatrix. make(Relation<? extends NumberVector> relation)Static Constructor from a full relation.static CovarianceMatrixCovarianceMatrix. make(Relation<? extends NumberVector> relation, DBIDs ids)Static Constructor from a full relation.static ProjectedCentroidProjectedCentroid. make(long[] dims, Relation<? extends NumberVector> relation)Static Constructor from a relation.static ProjectedCentroidProjectedCentroid. make(long[] dims, Relation<? extends NumberVector> relation, DBIDs ids)Static Constructor from a relation. -
Uses of Relation in elki.math.linearalgebra.pca
Methods in elki.math.linearalgebra.pca with parameters of type Relation Modifier and Type Method Description PCAResultAutotuningPCA. processIds(DBIDs ids, Relation<? extends NumberVector> database)double[][]CovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> database)Compute covariance matrix for a collection of database IDs.PCAResultPCARunner. processIds(DBIDs ids, Relation<? extends NumberVector> database)Run PCA on a collection of database IDs.double[][]RANSACCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> relation)double[][]StandardCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> database)Compute Covariance Matrix for a collection of database IDs.double[][]WeightedCovarianceMatrixBuilder. processIds(DBIDs ids, Relation<? extends NumberVector> relation)Weighted Covariance Matrix for a set of IDs.PCAResultAutotuningPCA. processQueryResult(DoubleDBIDList results, Relation<? extends NumberVector> database)PCAResultPCARunner. processQueryResult(DoubleDBIDList results, Relation<? extends NumberVector> database)Run PCA on a QueryResult Collection.default double[][]CovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database)Compute covariance matrix for a QueryResult Collection.default double[][]CovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database, int k)Compute covariance matrix for a QueryResult collection.double[][]WeightedCovarianceMatrixBuilder. processQueryResults(DoubleDBIDList results, Relation<? extends NumberVector> database, int k)Compute Covariance Matrix for a QueryResult Collection.default double[][]CovarianceMatrixBuilder. processRelation(Relation<? extends NumberVector> relation)Compute covariance matrix for a complete relation. -
Uses of Relation in elki.math.scales
Methods in elki.math.scales with parameters of type Relation Modifier and Type Method Description static LinearScale[]Scales. calcScales(Relation<? extends SpatialComparable> rel)Compute a linear scale for each dimension. -
Uses of Relation in elki.math.spacefillingcurves
Constructors in elki.math.spacefillingcurves with parameters of type Relation Constructor Description ZCurveTransformer(Relation<? extends NumberVector> relation, DBIDs ids)Constructor. -
Uses of Relation in elki.math.statistics.intrinsicdimensionality
Methods in elki.math.statistics.intrinsicdimensionality with parameters of type Relation Modifier and Type Method Description protected doubleLPCAEstimator. estimate(DBIDs ids, Relation<? extends NumberVector> relation)Returns an ID estimate based on the specified filter for the given point DBID set and relation. -
Uses of Relation in elki.outlier
Methods in elki.outlier with parameters of type Relation Modifier and Type Method Description private static voidCOP. computeCentroid(double[] centroid, Relation<? extends NumberVector> relation, DBIDs ids)Recompute the centroid of a set.private doubleGaussianUniformMixture. loglikelihoodNormal(DBIDs objids, SetDBIDs anomalous, CovarianceMatrix builder, Relation<? extends NumberVector> relation)Computes the loglikelihood of all normal objects.OutlierResultCOP. run(Relation<V> relation)Process a single relation.OutlierResultDWOF. run(Relation<O> relation)Performs the Generalized DWOF_SCORE algorithm on the given database by calling all the other methods in the proper order.OutlierResultGaussianModel. run(Relation<? extends NumberVector> relation)Run the algorithmOutlierResultGaussianUniformMixture. run(Relation<? extends NumberVector> relation)Run the algorithmOutlierResultOPTICSOF. run(Relation<O> relation)Perform OPTICS-based outlier detection.OutlierResultSimpleCOP. run(Relation<V> relation)Run Simple COP outlier detection. -
Uses of Relation in elki.outlier.anglebased
Methods in elki.outlier.anglebased with parameters of type Relation Modifier and Type Method Description private voidFastABOD. fastABOD(Relation<V> relation, DBIDs ids, WritableDoubleDataStore abodvalues, DoubleMinMax minmaxabod)Full kernel-based version.private booleanFastABOD. kNNABOD(Relation<V> relation, DBIDs ids, WritableDoubleDataStore abodvalues, DoubleMinMax minmaxabod)Simpler kNN based, can use more indexing.OutlierResultABOD. run(Relation<V> relation)Run ABOD on the data set.OutlierResultFastABOD. run(Relation<V> relation)Run Fast-ABOD on the data set.OutlierResultLBABOD. run(Relation<V> relation)Run LB-ABOD on the data set. -
Uses of Relation in elki.outlier.clustering
Methods in elki.outlier.clustering with parameters of type Relation Modifier and Type Method Description private voidCBLOF. computeCBLOFs(Relation<O> relation, WritableDoubleDataStore cblofs, DoubleMinMax cblofMinMax, java.util.List<? extends Cluster<MeanModel>> largeClusters, java.util.List<? extends Cluster<MeanModel>> smallClusters)Compute the CBLOF scores for all the data.private voidKMeansOutlierDetection. distanceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)Simple distance-based scoring function.private intCBLOF. getClusterBoundary(Relation<O> relation, java.util.List<? extends Cluster<MeanModel>> clusters)Compute the boundary index separating the large cluster from the small cluster.OutlierResultCBLOF. run(Database database, Relation<O> relation)Run CBLOF.OutlierResultDBSCANOutlierDetection. run(Database db, Relation<? extends NumberVector> relation)Runs the algorithm in the timed evaluation part.OutlierResultEMOutlier. run(Relation<V> relation)Runs the algorithm in the timed evaluation part.OutlierResultGLOSH. run(Database db, Relation<? extends NumberVector> relation)OutlierResultKMeansOutlierDetection. run(Relation<O> relation)Run the outlier detection algorithm.private voidKMeansOutlierDetection. singletonsScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)Distance-based scoring that takes singletons into account.private voidKMeansOutlierDetection. varianceScoring(Clustering<?> c, Relation<O> relation, NumberVectorDistance<? super O> distfunc, WritableDoubleDataStore scores, DoubleMinMax mm)Variance-based scoring function. -
Uses of Relation in elki.outlier.density
Fields in elki.outlier.density declared as Relation Modifier and Type Field Description (package private) Relation<? extends NumberVector>IsolationForest.ForestBuilder. relationData relation to useMethods in elki.outlier.density with parameters of type Relation Modifier and Type Method Description private java.util.List<HySortOD.Hypercube>HySortOD. getSortedHypercubes(Relation<? extends NumberVector> relation)Create and sort hypercubes considering their coordinates.OutlierResultHySortOD. run(Database db, Relation<? extends NumberVector> relation)OutlierResultIsolationForest. run(Relation<? extends NumberVector> relation)Run the isolation forest algorithm.Constructors in elki.outlier.density with parameters of type Relation Constructor Description ForestBuilder(Relation<? extends NumberVector> relation, int subsampleSize, java.util.Random random)Constructor for the tree builder. -
Uses of Relation in elki.outlier.distance
Fields in elki.outlier.distance declared as Relation Modifier and Type Field Description (package private) Relation<O>HilOut.HilbertFeatures. relationRelation indexedMethods in elki.outlier.distance with parameters of type Relation Modifier and Type Method Description protected DoubleDBIDListReferenceBasedOutlierDetection. computeDistanceVector(NumberVector refPoint, Relation<? extends NumberVector> database, PrimitiveDistanceQuery<? super NumberVector> distFunc)Computes for each object the distance to one reference point.protected abstract DoubleDataStoreAbstractDBOutlier. computeOutlierScores(Relation<O> relation, double d)computes an outlier score for each object of the database.protected DoubleDataStoreDBOutlierDetection. computeOutlierScores(Relation<O> relation, double d)protected DoubleDataStoreDBOutlierScore. computeOutlierScores(Relation<O> relation, double d)OutlierResultAbstractDBOutlier. run(Relation<O> relation)Runs the algorithm in the timed evaluation part.OutlierResultHilOut. run(Relation<O> relation)Run the HilOut algorithm.OutlierResultKNNDD. run(Relation<O> relation)Runs the algorithm in the timed evaluation part.OutlierResultKNNOutlier. run(Relation<O> relation)Runs the algorithm in the timed evaluation part.OutlierResultKNNSOS. run(Relation<O> relation)Run the algorithm.OutlierResultKNNWeightOutlier. run(Relation<O> relation)Runs the algorithm in the timed evaluation part.OutlierResultLocalIsolationCoefficient. run(Relation<O> relation)Runs the algorithm in the timed evaluation part.OutlierResultODIN. run(Relation<O> relation)Run the ODIN algorithmOutlierResultReferenceBasedOutlierDetection. run(Relation<? extends NumberVector> relation)Run the algorithm on the given relation.OutlierResultSOS. run(Relation<O> relation)Run the algorithm.Constructors in elki.outlier.distance with parameters of type Relation Constructor Description HilbertFeatures(Relation<O> relation, double[] min, double diameter)Constructor. -
Uses of Relation in elki.outlier.distance.parallel
Methods in elki.outlier.distance.parallel with parameters of type Relation Modifier and Type Method Description OutlierResultParallelKNNOutlier. run(Relation<O> relation)Run the parallel kNN outlier detector.OutlierResultParallelKNNWeightOutlier. run(Relation<O> relation)Run the parallel kNN weight outlier detector. -
Uses of Relation in elki.outlier.intrinsic
Methods in elki.outlier.intrinsic with parameters of type Relation Modifier and Type Method Description OutlierResultIDOS. run(Relation<O> relation)Run the algorithmOutlierResultISOS. run(Relation<O> relation)Run the algorithm.OutlierResultLID. run(Relation<O> relation)Run the algorithm -
Uses of Relation in elki.outlier.lof
Fields in elki.outlier.lof declared as Relation Modifier and Type Field Description private Relation<? extends NumberVector>ALOCI.ALOCIQuadTree. relationRelation indexed.Methods in elki.outlier.lof with parameters of type Relation Modifier and Type Method Description protected voidINFLO. computeINFLO(Relation<O> relation, ModifiableDBIDs pruned, KNNSearcher<DBIDRef> knnq, WritableDataStore<ModifiableDBIDs> rNNminuskNNs, WritableDoubleDataStore inflos, DoubleMinMax inflominmax)Compute the final INFLO scores.private voidINFLO. computeNeighborhoods(Relation<O> relation, DataStore<SetDBIDs> knns, ModifiableDBIDs pruned, WritableDataStore<ModifiableDBIDs> rNNminuskNNs)Compute the reverse kNN minus the kNN.protected voidLoOP. computePDists(Relation<O> relation, KNNSearcher<DBIDRef> knn, WritableDoubleDataStore pdists)Compute the probabilistic distances used by LoOP.protected doubleLoOP. computePLOFs(Relation<O> relation, KNNSearcher<DBIDRef> knn, WritableDoubleDataStore pdists, WritableDoubleDataStore plofs)Compute the LOF values, using the pdist distances.private intKDEOS. dimensionality(Relation<O> rel)Ugly hack to allow using this implementation without having a well-defined dimensionality.protected voidKDEOS. estimateDensities(Relation<O> rel, KNNSearcher<DBIDRef> knnq, DBIDs ids, WritableDataStore<double[]> densities)Perform the kernel density estimation step.private Pair<Pair<KNNSearcher<DBIDRef>,KNNSearcher<DBIDRef>>,Pair<RKNNSearcher<DBIDRef>,RKNNSearcher<DBIDRef>>>OnlineLOF. getKNNAndRkNNQueries(Relation<O> relation, StepProgress stepprog)Get the kNN and rkNN queries for the algorithm.OutlierResultALOCI. run(Relation<V> relation)Run the algorithm.OutlierResultCOF. run(Relation<O> relation)Runs the COF algorithm on the given database.OutlierResultFlexibleLOF. run(Relation<O> relation)Performs the Generalized LOF algorithm on the given database by callingFlexibleLOF.doRunInTime(elki.database.ids.DBIDs, elki.database.query.knn.KNNSearcher<elki.database.ids.DBIDRef>, elki.database.query.knn.KNNSearcher<elki.database.ids.DBIDRef>, elki.logging.progress.StepProgress).OutlierResultINFLO. run(Relation<O> relation)Run the algorithmOutlierResultKDEOS. run(Relation<O> rel)Run the KDEOS outlier detection algorithm.OutlierResultLDF. run(Relation<O> relation)Run the naive kernel density LOF algorithm.OutlierResultLDOF. run(Relation<O> relation)Run the algorithmOutlierResultLOCI. run(Relation<O> relation)Run the algorithmOutlierResultLOF. run(Relation<O> relation)Runs the LOF algorithm on the given database.OutlierResultLoOP. run(Relation<O> relation)Performs the LoOP algorithm on the given database.OutlierResultOnlineLOF. run(Relation<O> relation)Performs the Generalized LOF_SCORE algorithm on the given database by calling#doRunInTime(Database)and adds aOnlineLOF.LOFKNNListenerto the preprocessors.OutlierResultSimpleKernelDensityLOF. run(Relation<O> relation)Run the naive kernel density LOF algorithm.OutlierResultSimplifiedLOF. run(Relation<O> relation)Run the Simple LOF algorithm.OutlierResultVarianceOfVolume. run(Relation<O> relation)Runs the VOV algorithm on the given database.Constructors in elki.outlier.lof with parameters of type Relation Constructor Description ALOCIQuadTree(double[] min, double[] max, double[] shift, int nmin, Relation<? extends NumberVector> relation)Constructor. -
Uses of Relation in elki.outlier.lof.parallel
Methods in elki.outlier.lof.parallel with parameters of type Relation Modifier and Type Method Description OutlierResultParallelLOF. run(Relation<O> relation)Run the LOF algorithm in parallel.OutlierResultParallelSimplifiedLOF. run(Relation<O> relation)Run the simplified LOF algorithm. -
Uses of Relation in elki.outlier.meta
Methods in elki.outlier.meta with parameters of type Relation Modifier and Type Method Description private java.util.ArrayList<ArrayDBIDs>HiCS. buildOneDimIndexes(Relation<? extends NumberVector> relation)Calculates "index structures" for every attribute, i.e. sorts a ModifiableArray of every DBID in the database for every dimension and stores them in a listprivate voidHiCS. calculateContrast(Relation<? extends NumberVector> relation, HiCS.HiCSSubspace subspace, java.util.ArrayList<ArrayDBIDs> subspaceIndex, java.util.Random random)Calculates the actual contrast of a given subspace.private java.util.Set<HiCS.HiCSSubspace>HiCS. calculateSubspaces(Relation<? extends NumberVector> relation, java.util.ArrayList<ArrayDBIDs> subspaceIndex, java.util.Random random)Identifies high contrast subspaces in a given full-dimensional database.OutlierResultExternalDoubleOutlierScore. run(Relation<?> relation)Run the algorithm.OutlierResultFeatureBagging. run(Relation<NumberVector> relation)Run the algorithm on a data set.OutlierResultHiCS. run(Relation<? extends NumberVector> relation)Perform HiCS on a given database. -
Uses of Relation in elki.outlier.spatial
Methods in elki.outlier.spatial with parameters of type Relation Modifier and Type Method Description OutlierResultCTLuGLSBackwardSearchAlgorithm. run(Relation<V> relationx, Relation<? extends NumberVector> relationy)Run the algorithmOutlierResultCTLuMeanMultipleAttributes. run(Database database, Relation<N> spatial, Relation<O> attributes)Run the algorithmOutlierResultCTLuMedianAlgorithm. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)Main method.OutlierResultCTLuMedianMultipleAttributes. run(Database database, Relation<N> spatial, Relation<O> attributes)Run the algorithmOutlierResultCTLuMoranScatterplotOutlier. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)Main method.OutlierResultCTLuRandomWalkEC. run(Relation<O> spatial, Relation<? extends NumberVector> relation)Run the algorithm.OutlierResultCTLuScatterplotOutlier. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)Main method.OutlierResultCTLuZTestOutlier. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)Main method.OutlierResultSLOM. run(Database database, Relation<N> spatial, Relation<O> relation)OutlierResultSOF. run(Database database, Relation<N> spatial, Relation<O> relation)The main run methodOutlierResultTrimmedMeanApproach. run(Database database, Relation<N> nrel, Relation<? extends NumberVector> relation)Run the algorithm.private Pair<DBIDVar,java.lang.Double>CTLuGLSBackwardSearchAlgorithm. singleIteration(Relation<V> relationx, Relation<? extends NumberVector> relationy)Run a single iteration of the GLS-SOD modeling step -
Uses of Relation in elki.outlier.spatial.neighborhood
Methods in elki.outlier.spatial.neighborhood with parameters of type Relation Modifier and Type Method Description private DataStore<DBIDs>ExtendedNeighborhood.Factory. extendNeighborhood(Database database, Relation<? extends O> relation)Method to load the external neighbors.NeighborSetPredicateExtendedNeighborhood.Factory. instantiate(Database database, Relation<? extends O> relation)NeighborSetPredicateExternalNeighborhood.Factory. instantiate(Database database, Relation<?> relation)NeighborSetPredicateNeighborSetPredicate.Factory. instantiate(Database database, Relation<? extends O> relation)Instantiation method.NeighborSetPredicatePrecomputedKNearestNeighborNeighborhood.Factory. instantiate(Database database, Relation<? extends O> relation)private DataStore<DBIDs>ExternalNeighborhood.Factory. loadNeighbors(Database database, Relation<?> relation)Method to load the external neighbors. -
Uses of Relation in elki.outlier.spatial.neighborhood.weighted
Methods in elki.outlier.spatial.neighborhood.weighted with parameters of type Relation Modifier and Type Method Description LinearWeightedExtendedNeighborhoodLinearWeightedExtendedNeighborhood.Factory. instantiate(Database database, Relation<? extends O> relation)UnweightedNeighborhoodAdapterUnweightedNeighborhoodAdapter.Factory. instantiate(Database database, Relation<? extends O> relation)WeightedNeighborSetPredicateWeightedNeighborSetPredicate.Factory. instantiate(Database database, Relation<? extends O> relation)Instantiation method. -
Uses of Relation in elki.outlier.subspace
Fields in elki.outlier.subspace declared as Relation Modifier and Type Field Description (package private) Relation<? extends NumberVector>OUTRES.KernelDensityEstimator. relationRelation to retrieve data fromMethods in elki.outlier.subspace with parameters of type Relation Modifier and Type Method Description protected java.util.ArrayList<java.util.ArrayList<DBIDs>>AbstractAggarwalYuOutlier. buildRanges(Relation<? extends NumberVector> relation)Grid discretization of the data:
Each attribute of data is divided into phi equi-depth ranges.
Each range contains a fraction f=1/phi of the records.private static double[]SOD. computePerDimensionVariances(Relation<? extends NumberVector> relation, double[] center, DBIDs neighborhood)Compute the per-dimension variances for the given neighborhood and center.private DBIDsSOD. getNearestNeighbors(Relation<V> relation, SimilarityQuery<V> simQ, DBIDRef queryObject)Get the k nearest neighbors in terms of the shared nearest neighbor distance.OutlierResultAggarwalYuEvolutionary. run(Relation<? extends NumberVector> relation)Performs the evolutionary algorithm on the given database.OutlierResultAggarwalYuNaive. run(Relation<? extends NumberVector> relation)Run the algorithm on the given relation.OutlierResultOUTRES. run(Relation<? extends NumberVector> relation)Main loop for OUTRESOutlierResultSOD. run(Relation<V> relation)Performs the SOD algorithm on the given database.Constructors in elki.outlier.subspace with parameters of type Relation Constructor Description EvolutionarySearch(Relation<? extends NumberVector> relation, java.util.ArrayList<java.util.ArrayList<DBIDs>> ranges, java.util.Random random)Constructor.KernelDensityEstimator(Relation<? extends NumberVector> relation, double eps)Constructor. -
Uses of Relation in elki.outlier.svm
Methods in elki.outlier.svm with parameters of type Relation Modifier and Type Method Description OutlierResultLibSVMOneClassOutlierDetection. run(Relation<V> relation)Run one-class SVM.OutlierResultOCSVM. run(Relation<V> relation)Run one-class SVM.OutlierResultSVDD. run(Relation<V> relation)Run one-class SVM. -
Uses of Relation in elki.outlier.trivial
Methods in elki.outlier.trivial with parameters of type Relation Modifier and Type Method Description OutlierResultByLabelOutlier. run(Relation<?> relation)Run the algorithmOutlierResultTrivialAllOutlier. run(Relation<?> relation)Run the trivial algorithm.OutlierResultTrivialAverageCoordinateOutlier. run(Relation<? extends NumberVector> relation)Run the actual algorithm.OutlierResultTrivialGeneratedOutlier. run(Relation<Model> models, Relation<NumberVector> vecs, Relation<?> labels)Run the algorithmOutlierResultTrivialNoOutlier. run(Relation<?> relation)Run the trivial algorithm. -
Uses of Relation in elki.projection
Methods in elki.projection that return Relation Modifier and Type Method Description Relation<DoubleVector>SNE. autorun(Database database)Relation<DoubleVector>TSNE. autorun(Database database)Relation<DoubleVector>BarnesHutTSNE. run(Database database, Relation<O> relation)Relation<DoubleVector>SNE. run(Relation<O> relation)Perform SNE projection.Relation<DoubleVector>TSNE. run(Relation<O> relation)Perform tSNE projection.Methods in elki.projection with parameters of type Relation Modifier and Type Method Description <T extends O>
AffinityMatrixAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)Compute the affinity matrix.<T extends O>
AffinityMatrixGaussianAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)<T extends O>
AffinityMatrixIntrinsicNearestNeighborAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)<T extends O>
AffinityMatrixNearestNeighborAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)<T extends O>
AffinityMatrixPerplexityAffinityMatrixBuilder. computeAffinityMatrix(Relation<T> relation, double initialScale)protected voidAbstractProjectionAlgorithm. removePreviousRelation(Relation<?> relation)Remove the previous relation.Relation<DoubleVector>BarnesHutTSNE. run(Database database, Relation<O> relation)Relation<DoubleVector>SNE. run(Relation<O> relation)Perform SNE projection.Relation<DoubleVector>TSNE. run(Relation<O> relation)Perform tSNE projection. -
Uses of Relation in elki.result
Methods in elki.result that return types with arguments of type Relation Modifier and Type Method Description static java.util.List<Relation<?>>ResultUtil. getRelations(java.lang.Object r)Collect all Annotation results from a ResultMethods in elki.result with parameters of type Relation Modifier and Type Method Description private DoubleObjPair<Polygon>KMLOutputHandler. buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords)Recursively step through the clusters to build the hulls.static SamplingResultSamplingResult. getSamplingResult(Relation<?> rel)Get the sampling result attached to a relationstatic ScalesResultScalesResult. getScalesResult(Relation<? extends SpatialComparable> rel)Get (or create) a scales result for a relation.Method parameters in elki.result with type arguments of type Relation Modifier and Type Method Description private java.lang.StringBuilderKMLOutputHandler. makeDescription(java.util.Collection<Relation<?>> relations, DBIDRef id)Make an HTML description.Constructors in elki.result with parameters of type Relation Constructor Description SamplingResult(Relation<?> rel)Constructor.ScalesResult(Relation<? extends SpatialComparable> relation)Constructor. -
Uses of Relation in elki.result.textwriter
Method parameters in elki.result.textwriter with type arguments of type Relation Modifier and Type Method Description private voidTextWriter. printObject(TextWriterStream out, Database db, DBIDRef objID, java.util.List<Relation<?>> ra)private voidTextWriter. writeClusterResult(Database db, StreamFactory streamOpener, Clustering<Model> clustering, Cluster<Model> clus, java.util.List<Relation<?>> ra, NamingScheme naming)private voidTextWriter. writeOrderingResult(Database db, StreamFactory streamOpener, OrderingResult or, java.util.List<Relation<?>> ra) -
Uses of Relation in elki.similarity
Fields in elki.similarity declared as Relation Modifier and Type Field Description protected Relation<? extends DBID>AbstractDBIDSimilarity. databaseThe database we work onprotected Relation<O>AbstractIndexBasedSimilarity.Instance. relationRelation to query.Methods in elki.similarity that return Relation Modifier and Type Method Description Relation<? extends O>AbstractIndexBasedSimilarity.Instance. getRelation()Methods in elki.similarity with parameters of type Relation Modifier and Type Method Description abstract <T extends O>
AbstractIndexBasedSimilarity.Instance<T,?>AbstractIndexBasedSimilarity. instantiate(Relation<T> database)<T extends O>
FractionalSharedNearestNeighborSimilarity.Instance<T>FractionalSharedNearestNeighborSimilarity. instantiate(Relation<T> database)<T extends O>
IndexBasedSimilarity.Instance<T,?>IndexBasedSimilarity. instantiate(Relation<T> database)Preprocess the database to get the actual distance function.<T extends NumberVector>
SpatialPrimitiveDistanceSimilarityQuery<T>Kulczynski1Similarity. instantiate(Relation<T> database)default <T extends O>
SimilarityQuery<T>PrimitiveSimilarity. instantiate(Relation<T> relation)<T extends O>
SharedNearestNeighborSimilarity.Instance<T>SharedNearestNeighborSimilarity. instantiate(Relation<T> database)<T extends O>
SimilarityQuery<T>Similarity. instantiate(Relation<T> relation)Instantiate with a representation to get the actual similarity query.Constructors in elki.similarity with parameters of type Relation Constructor Description AbstractDBIDSimilarity(Relation<? extends DBID> database)Constructor.Instance(Relation<O> relation, I index)Constructor.Instance(Relation<T> database, SharedNearestNeighborIndex<T> preprocessor, FractionalSharedNearestNeighborSimilarity<? super T> similarityFunction)Constructor.Instance(Relation<O> database, SharedNearestNeighborIndex<O> preprocessor, SharedNearestNeighborSimilarity<? super O> similarityFunction)Constructor. -
Uses of Relation in elki.similarity.cluster
Methods in elki.similarity.cluster with parameters of type Relation Modifier and Type Method Description <T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringAdjustedRandIndexSimilarity. instantiate(Relation<T> relation)<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringBCubedF1Similarity. instantiate(Relation<T> relation)<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringDistanceSimilarity. instantiate(Relation<T> relation)<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringFowlkesMallowsSimilarity. instantiate(Relation<T> relation)<T extends Clustering<?>>
DistanceSimilarityQuery<T>ClusteringRandIndexSimilarity. instantiate(Relation<T> relation)<T extends Cluster<?>>
DistanceSimilarityQuery<T>ClusterIntersectionSimilarity. instantiate(Relation<T> relation)<T extends Cluster<?>>
DistanceSimilarityQuery<T>ClusterJaccardSimilarity. instantiate(Relation<T> relation) -
Uses of Relation in elki.similarity.kernel
Methods in elki.similarity.kernel with parameters of type Relation Modifier and Type Method Description <T extends NumberVector>
DistanceSimilarityQuery<T>PolynomialKernel. instantiate(Relation<T> database)Constructors in elki.similarity.kernel with parameters of type Relation Constructor Description KernelMatrix(SimilarityQuery<? super O> kernelFunction, Relation<? extends O> relation, DBIDs ids)Provides a new kernel matrix.KernelMatrix(PrimitiveSimilarity<? super O> kernelFunction, Relation<? extends O> relation, DBIDs ids)Provides a new kernel matrix. -
Uses of Relation in elki.timeseries
Methods in elki.timeseries with parameters of type Relation Modifier and Type Method Description ChangePointsOfflineChangePointDetectionAlgorithm.Instance. run(Relation<DoubleVector> relation)Run the change point detection algorithm on a data relation.ChangePointsOfflineChangePointDetectionAlgorithm. run(Relation<DoubleVector> relation)Executes multiple change point detection for given relationChangePointsSigniTrendChangeDetection.Instance. run(Relation<NumberVector> relation)Process a relation.ChangePointsSigniTrendChangeDetection. run(Relation<NumberVector> relation)Executes Signi-Trend for given relation -
Uses of Relation in elki.utilities.referencepoints
Methods in elki.utilities.referencepoints with parameters of type Relation Modifier and Type Method Description java.util.Collection<? extends NumberVector>AxisBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>FullDatabaseReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>GridBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>RandomGeneratedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>RandomSampleReferencePoints. getReferencePoints(Relation<? extends NumberVector> db)java.util.Collection<? extends NumberVector>ReferencePointsHeuristic. getReferencePoints(Relation<? extends NumberVector> db)Get the reference points for the given database.java.util.Collection<? extends NumberVector>StarBasedReferencePoints. getReferencePoints(Relation<? extends NumberVector> db) -
Uses of Relation in elki.visualization
Fields in elki.visualization declared as Relation Modifier and Type Field Description private Relation<?>VisualizationTask. relationThe main representationMethods in elki.visualization with type parameters of type Relation Modifier and Type Method Description <R extends Relation<?>>
RVisualizationTask. getRelation()Constructors in elki.visualization with parameters of type Relation Constructor Description VisualizationTask(VisFactory factory, java.lang.String name, java.lang.Object result, Relation<?> relation)Visualization task. -
Uses of Relation in elki.visualization.parallel3d
Fields in elki.visualization.parallel3d declared as Relation Modifier and Type Field Description (package private) Relation<? extends O>OpenGL3DParallelCoordinates.Instance.Shared. relRelation to visualizeConstructors in elki.visualization.parallel3d with parameters of type Relation Constructor Description Instance(Relation<? extends O> rel, ProjectionParallel proj, OpenGL3DParallelCoordinates.Settings<O> settings, StylingPolicy stylepol, StyleLibrary stylelib)Constructor. -
Uses of Relation in elki.visualization.parallel3d.layout
Methods in elki.visualization.parallel3d.layout with parameters of type Relation Modifier and Type Method Description static double[]AbstractLayout3DPC. computeSimilarityMatrix(Dependence sim, Relation<? extends NumberVector> rel)Compute a column-wise dependency matrix for the given relation.LayoutAbstractLayout3DPC. layout(Relation<? extends NumberVector> rel)LayoutLayouter3DPC. layout(Relation<? extends V> rel)Run the layouting algorithm. -
Uses of Relation in elki.visualization.projector
Fields in elki.visualization.projector declared as Relation Modifier and Type Field Description (package private) Relation<V>HistogramProjector. relRelation we project.(package private) Relation<V>ParallelPlotProjector. relRelation we project.(package private) Relation<V>ScatterPlotProjector. relRelation we project.Methods in elki.visualization.projector that return Relation Modifier and Type Method Description Relation<V>HistogramProjector. getRelation()Get the relation we project.Relation<V>ParallelPlotProjector. getRelation()The relation we project.Relation<V>ScatterPlotProjector. getRelation()The relation we project.Methods in elki.visualization.projector with parameters of type Relation Modifier and Type Method Description private intParallelPlotFactory. dimensionality(Relation<?> rel)private intScatterPlotFactory. dimensionality(Relation<?> rel)Constructors in elki.visualization.projector with parameters of type Relation Constructor Description HistogramProjector(Relation<V> rel, int maxdim)Constructor.ParallelPlotProjector(Relation<V> rel)Constructor.ScatterPlotProjector(Relation<V> rel, int maxdim)Constructor. -
Uses of Relation in elki.visualization.visualizers.histogram
Fields in elki.visualization.visualizers.histogram declared as Relation Modifier and Type Field Description private Relation<NV>ColoredHistogramVisualizer.Instance. relationThe database we visualize -
Uses of Relation in elki.visualization.visualizers.parallel
Fields in elki.visualization.visualizers.parallel declared as Relation Modifier and Type Field Description protected Relation<NV>AbstractParallelVisualization. relationThe representation we visualize -
Uses of Relation in elki.visualization.visualizers.scatterplot
Fields in elki.visualization.visualizers.scatterplot declared as Relation Modifier and Type Field Description protected Relation<? extends NumberVector>AbstractScatterplotVisualization. relThe representation we visualizeprotected Relation<PolygonsObject>PolygonVisualization.Instance. repThe representation we visualizeprivate Relation<? extends java.lang.Number>TooltipScoreVisualization.Instance. resultNumber value to visualizeprivate Relation<?>TooltipStringVisualization.Instance. resultNumber value to visualizeMethods in elki.visualization.visualizers.scatterplot with parameters of type Relation Modifier and Type Method Description private voidTooltipScoreVisualization. addTooltips(java.lang.String nam, Relation<?> val, VisualizerContext context, ScatterPlotProjector<?> p, Relation<?> rel)Add tooltips.private voidTooltipStringVisualization. addTooltips(java.lang.String name, Relation<?> rel, VisualizerContext context, Relation<?> rep, ScatterPlotProjector<?> p) -
Uses of Relation in elki.visualization.visualizers.scatterplot.index
Methods in elki.visualization.visualizers.scatterplot.index with parameters of type Relation Modifier and Type Method Description static booleanTreeSphereVisualization. canVisualize(Relation<?> rel, AbstractMTree<?,?,?,?> tree)Test for a visualizable index in the context's database. -
Uses of Relation in elki.visualization.visualizers.scatterplot.outlier
Fields in elki.visualization.visualizers.scatterplot.outlier declared as Relation Modifier and Type Field Description protected Relation<double[]>COPVectorVisualization.Instance. resultThe outlier result to visualize -
Uses of Relation in elki.visualization.visualizers.scatterplot.uncertain
Fields in elki.visualization.visualizers.scatterplot.uncertain declared as Relation Modifier and Type Field Description protected Relation<? extends UncertainObject>UncertainBoundingBoxVisualization.Instance. relThe representation we visualizeprotected Relation<? extends UncertainObject>UncertainSamplesVisualization.Instance. relThe representation we visualize -
Uses of Relation in tutorial.clustering
Methods in tutorial.clustering with parameters of type Relation Modifier and Type Method Description protected WritableDataStore<SameSizeKMeans.Meta>SameSizeKMeans. initializeMeta(Relation<V> relation, double[][] means)Initialize the metadata storage.protected double[][]SameSizeKMeans. refineResult(Relation<V> relation, double[][] means, java.util.List<ModifiableDBIDs> clusters, WritableDataStore<SameSizeKMeans.Meta> metas, ArrayModifiableDBIDs tids)Perform k-means style iterations to improve the clustering result.Clustering<SimplePrototypeModel<DBID>>CFSFDP. run(Relation<O> relation)Perform CFSFDP clustering.Clustering<Model>NaiveAgglomerativeHierarchicalClustering1. run(Relation<O> relation)Perform HACClustering<Model>NaiveAgglomerativeHierarchicalClustering2. run(Relation<O> relation)Perform HACClustering<Model>NaiveAgglomerativeHierarchicalClustering3. run(Relation<O> relation)Perform HACClusterMergeHistoryNaiveAgglomerativeHierarchicalClustering4. run(Relation<O> relation)Run the algorithmClustering<MeanModel>SameSizeKMeans. run(Relation<V> relation)Run k-means with cluster size constraints.protected voidSameSizeKMeans. updateDistances(Relation<V> relation, double[][] means, WritableDataStore<SameSizeKMeans.Meta> metas, NumberVectorDistance<? super V> df)Compute the distances of each object to all means. -
Uses of Relation in tutorial.outlier
Methods in tutorial.outlier with parameters of type Relation Modifier and Type Method Description OutlierResultDistanceStddevOutlier. run(Relation<O> relation)Run the outlier detection algorithmOutlierResultODIN. run(Relation<O> relation)Run the ODIN algorithm
-